Jones, Charles H.; Edwards Air Force Base (International Foundation for Telemetering, 2004-10)
      One approach to improving spectrum usage efficiency is to manage the scheduling of frequencies more effectively. The use of metrics to analyze frequency scheduling could aid frequency managers in a variety of ways. However, the basic question of what is a good metric for representing and analyzing spectral usage remains unanswered. Some metrics capture spectral occupancy. This paper introduces metrics that change the focus from occupancy to availability. Just because spectrum is not in use does not mean it is available for use. A significant factor in creating unused but unusable spectrum is fragmentation. A mission profile for spectrum usage can be considered a rectangle in a standard time versus frequency grid. Even intelligent placement of these rectangles (i.e., the scheduling of a missions spectrum usage) can not always utilize all portions of the spectrum. The average typical mission availability (ATMA) metric provides a way of numerically answering the question: Could we have scheduled another typical mission? This is a much more practical question than: Did we occupy the entire spectrum? If another mission couldn’t have been scheduled, then the entire spectrum was effectively used, even if the entire spectrum wasn’t occupied.

      Jones, Charles H.; Edwards Air Force Base (International Foundation for Telemetering, 2004-10)
      There are seven parts of the Institute of Electrical and Electronics Engineers (IEEE) 1451 Smart Transducer family of standards either approved, in work, or in review. These documents are providing a nonproprietary set of standards for the implementation of smart transducers (i.e., sensors and actuators). This paper overviews these standards and their status. In particular, the IEEE P1451.5, which addresses wireless transducers, and the IEEE P1451.0, which will provide a common high level architecture for the entire family, will be discussed. A reference model, which is being used as a focus for the IEEE P1451.0, will be introduced to help show the relation between all the members of the family.

      Eccles, Lee H.; Jones, Charles H.; Boeing Commercial Airplane Company; Edwards Air Force Base (International Foundation for Telemetering, 2004-10)
      The Technical Committee 9 (TC-9) of the Institute of Electrical and Electronics Engineers (IEEE) Instrument and Measurement Society wants to ensure that all members of the IEEE 1451 family of standards conform to a common set of basic functionality and have, at some level, a common interface. To this end, the IEEE p1451.0 working group has been chartered to prepare an overarching standard that will define the operation of the other members of the family while still leaving the physical interface up to the various other standards working groups. The IEEE p1451.0 will define the general functionality required of an IEEE 1451 transducer, a common command set that is appropriate to all family members, and the core set of transducer electronic data sheets (TEDS). This paper gives a brief overview of the overall functionality and follows that with a description of the commands and the TEDS.

      Sinclair, Robert; Beech, Russell; Jones, Kevin; Jones, Charles H.; NVE Corporation; Edwards Air Force Base (International Foundation for Telemetering, 2004-10)
      The wireless sensor concept has been hindered in the past by the large number of components needed to add the wireless transceiver feature and the additional power consumption needed for that feature. This has been resolved by incorporating all the wireless components into a single, low power modular circuit. Intelligence is being added to legacy sensors to make them Institute of Electrical and Electronics Engineers (IEEE) 1451.4 compatible with an element called a Sensor Identification Transducer Electronic Data Sheet (SITEDS), which contains the Transducer Electronics Data Sheet (TEDS) for that sensor. All the sensor interface parameters are automatically configured by a module called the Universal Smart Transducer Interface Module (USTIM) using the TEDS input from the respective sensor’s SITEDS. An IEEE P1451.5 compatible wireless interface can be incorporated into the SITEDS with the transceiver module giving the legacy sensor full wireless capability.

      Fernandes, Ronald; Graul, Michael; Meric, Burak; Jones, Charles H.; Knowledge Based Systems, Inc.; Edwards Air Force Base (International Foundation for Telemetering, 2004-10)
      This paper presents a new approach for the effective generation of translator scripts that can be used to automate the translation of data display configurations from one vendor format to another. Our approach uses the IDEF5 ontology description method to capture the ontology of each vendor format and provides simple rules for performing mappings. In addition, the method includes the specification of mappings between a language-specific ontology and its corresponding syntax specification, that is, either an eXtensible Markup Language (XML) Schema or Document Type Description (DTD). Finally, we provide an algorithm for automatically generating eXtensible Stylesheet Language Transformation (XSLT) scripts that transform XML documents from one language to another. The method is implemented in a graphical tool called the Data Display Translator Generator (DDTG) that supports both inter-language (ontology-to-ontology) and intra-language (syntax-to-ontology) mappings and generates the XSLT scripts. The tool renders the XML Schema or DTD as trees, provides intuitive, user-friendly interfaces for performing the mappings, and provides a report of completed mappings. It also generates data type conversion code when both the source and target syntaxes are XML Schema-based. Our approach has the advantage of performing language mappings at an abstract, ontology level, and facilitates the mapping of tool ontologies to a common domain ontology (in our case, Data Display Markup Language or DDML), thereby eliminating the O(n^2) mapping problem that involves a number of data formats in the same domain.