• JOINT RANGE SYSTEMS INTEROPERABILITY ACHIEVED THROUGH THE IMPLEMENTATION OF THE TEST AND TRAINING ENABLING ARCHITECTURE (TENA)

      Hudgins, B. Gene; Lucas, Jason; TENA; Eglin Air Force Base (International Foundation for Telemetering, 2004-10)
      The Foundation Initiative 2010 (FI 2010) project, sponsored by the Office of the Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP), has developed and is continuing to refine a common architecture and requisite software used to integrate testing, training, and simulation systems distributed across many DoD test and training range facilities. The Test and Training Enabling Architecture (TENA), has been successfully implemented on DoD and commercial range instrumentation systems, used as a reusable enabler of distributed, live United States Joint Forces Command (USJFCOM) and Joint National Training Capability (JNTC) exercises.
    • REACTIVE GRASP WITH PATH RELINKING FOR BROADCAST SCHEDULING

      Commander, Clayton W.; Butenko, Sergiy I.; Pardalos, Panos M.; Oliveira, Carlos A.S.; Eglin Air Force Base; Texas A&M University; University of Florida (International Foundation for Telemetering, 2004-10)
      The Broadcast Scheduling Problem (BSP) is a well known NP-complete problem that arises in the study of wireless networks. In the BSP, a finite set of stations are to be scheduled in a time division multiple access (TDMA) frame. The objective is a collision free transmission schedule with the minimum number of TDMA slots and maximal slot utilization. Such a schedule will minimize the total system delay. We present variations of a Greedy Randomized Adaptive Search Procedure (GRASP) for the BSP. Path-relinking, a post-optimization strategy is applied. Also, a reactivity method is used to balance GRASP parameters. Numerical results of our research are reported and compared with other heuristics from the literature.
    • REAL-TIME GPS ATTITUDE DETERMINATION SYSTEM BASED ON EPOCH-BY-EPOCH™ TECHNOLOGY

      Bock, Yehuda; Macdonald, Thomas J.; Merts, John H.; Spires, William H., III; Bock, Lydia; Fayman, Jeffrey A.; Geodetics Inc.; MacroVision; Eglin Air Force Base (International Foundation for Telemetering, 2004-10)
      There are many civilian and military applications requiring precise attitude determination. Geodetics Inc. has demonstrated high-accuracy GPS attitude solutions using their Epoch-by- Epoch™ (EBE) technology. EBE technology provides computational algorithms for instantaneous differential GPS processing of raw GPS measurement data (pseudorange and carrier phase). One of the most significant advantages of EBE technology over conventional GPS Real-Time Kinematic (RTK) algorithms is in its instantaneous initialization and reinitialization capability. This capability eliminates re-initialization delays due to losses-oflock, such as occur during high-dynamic maneuvers. This paper provides empirical data that was gathered during a test program, sponsored by Eglin Air Force Base, to assess the performance in real time of EBE technology as it applies to attitude determination. Using simulated data from a high-dynamic (9’g) maneuver, EBE yielded real-time attitude with accuracy better than one tenth of a degree (0.038 - 0.083 degrees, one standard deviation), utilizing geodetic quality GPS receivers operating in dual- or single-frequency mode with antenna separation of 2 meters. GPS geodetic receivers with only single frequency capability yielded attitude with accuracy of between 0.044 - 0.176 degrees after 1.3% - 2.5% of the solutions were rejected as data outliers.