• ADVANCED INSTRUMENTATION CONTROL SYSTEMS FOR F/A-18E/F

      Baker, Grady; NAVAIR (International Foundation for Telemetering, 2004-10)
      The purpose of this paper is to present the use of production aircraft equipment and wiring for control of the onboard instrumentation system. The major advantages and challenges associated with the use of existing production equipment versus dedicated instrumentation wiring and hardware will be explored. Many of the issues raised, including non-interference with existing avionics, are complex. It is the hope of the author that this paper will generate awareness and discussion on these issues.
    • HOW WELL DOES A BLIND, ADAPTIVE CMA EQUALIZER WORK IN A SIMULATED TELEMETRY MULTIPATH ENVIRONMENT

      Law, Eugene; NAVAIR (International Foundation for Telemetering, 2004-10)
      This paper will present the results of experiments to characterize the performance of a blind, adaptive constant modulus algorithm (CMA) equalizer in simulated telemetry multipath environments. The variables included modulation method, bit rate, received signal-to-noise ratio, delay of the indirect path relative to the direct path, amplitude of the indirect path relative to the direct path, and fade rate. The main measured parameter was bit error probability (BEP). The tests showed that the equalizer usually improved the data quality in the presence of multipath.
    • Integrating a Limiter/Filter/Amplifier into a Conformal Wraparound GPS/TM Antenna Substrate

      Ryken, Marv; Davis, Rick; Kujiraoka, Scott; NAVAIR (International Foundation for Telemetering, 2004-10)
      Missile instrumentation systems designers are constantly striving to achieve better performance out of their systems. Optimizing the antenna coverage and decreasing the noise figure are constantly strived for in order to improve system performance. At the same time, weapon systems are becoming smaller with the resulting reduced area for instrumentation. One way to achieve a lower system noise figure is to have the limiter, filter, and amplifier (LFA) located as close to the antenna as possible. This can be achieved by integrating the LFA into the substrate of a conformal wraparound antenna. Not only does this decrease the system noise, but it also saves space in an already crowded missile instrumentation section. This paper details the latest efforts in accomplishing this integration.