Wegener, John A.; Zettwoch, Robert N.; The Boeing Company (International Foundation for Telemetering, 2004-10)
      Flight Test instrumentation control units have traditionally been low-technology units with mechanical switches, readouts, and perhaps an RS232 interface. As the complexity of Flight Test Instrumentation systems and operational requirements increase, and as cockpit space becomes scarce, these control units are no longer sufficient. These control units need to provide capabilities commensurate with the complexity of the instrumentation systems they control. This paper describes an instrumentation control system that uses a Boeing Integrated Defense Systems (IDS) Flight Test Instrumentation designed Instrumentation Control Unit (ICU). The ICU communicates with the avionics system to allow pilot control via existing aircraft displays. By taking advantage of a relatively simple protocol to interface with the avionics system, the substantial cost of reprogramming the avionics software is avoided, and software control is shifted to the Flight Test group, thus allowing a tremendous increase in system flexibility at reasonable cost. Functions of the unit can be changed relatively quickly and inexpensively. This promises a wide range of future applications, such as in-flight monitoring of flight-critical instrumentation parameters by the pilot, control of the instrumentation system via uplink (with pilot override), and real-time in-flight selection of telemetered data streams and parameters. This paper describes the baseline instrumentation control system and requirements to be used on the EA-18G Flight Test Program, plus additional future capabilities.

      Zettwoch, Robert N.; The Boeing Company (International Foundation for Telemetering, 2004-10)
      More and more aircraft system designs are incorporating a local-area-network (LAN) using either Fibre Channel (FC) or Ethernet. To date there hasn’t been a means for creating a FC node connection between an airborne network and a ground based FC network or for creating a reliable high-speed Ethernet connection between air and ground. Ethernet connections have had some success by using the IEEE 802.11 wireless LAN for these types of connections; however, these connections suffer from many inherent problems using this standard. Problems include the lack of telemetry spectrum control, security validation, high-speed data transfer efficiency, and channel acquisition time. This paper will describe a methodology that utilizes the IRIG-106 PCM standard for communicating between aircraft and ground-based networks. PCM can solve the aforementioned problems and it enables the user to take advantage of the many ARTM advances in PCM telemetry technology [1]. One such advance in technology has been the use of SOQPSK (Tier 1) or Multi-h CPM (Tier 2) to enable the user to effectively double or more their bandwidth efficiency compared to PCM/FM (or CPFSK) (Tier 0).