• A GRAPHICAL USER INTERFACE MIMO CHANNEL SIMULATOR

      Panagos, Adam G.; Kosbar, Kurt; University of Missouri – Rolla (International Foundation for Telemetering, 2004-10)
      Multiple-input multiple-output (MIMO) communication systems are attracting attention because their channel capacity can exceed single-input single-output systems, with no increase in bandwidth. While MIMO systems offer substantial capacity improvements, it can be challenging to characterize and verify their channel models. This paper describes a software MIMO channel simulator with a graphical user interface that allows the user to easily investigate a number of MIMO channel characteristics for a channel recently proposed by the 3rd Generation Partnership Project (3GPP).
    • HARDWARE DESIGN AND IMPLEMENTATION OFA MULTI-CHANNEL GPS SIMULATOR

      Yuhong, Zhu; Yanhong, Kou; Qing, Chang; Qishan, Zhang; BeiHang University (International Foundation for Telemetering, 2004-10)
      Hardware architecture and design details of a multi-channel GPS signal simulator with highly flexibility is presented, while the dynamic performance objectives and the requirements on the hardware architecture are discussed. The IF part of the simulator is implemented almost entirely in the digital domain by use of a field programmable gate array (FPGA), which mainly include C/A code generators, carrier generators, spreaders, and BPSK modulators. The results of testing the proposed simulator hardware architecture at IF with the help of a GPS receiver are presented.
    • HIGH ALTITUDE TRANSMITTER FLIGHT TESTING

      Brown, K. D.; Sorensen, Trevor; NNSA ’s Kansas City Plant; University of Kansas (International Foundation for Telemetering, 2004-10)
      This paper describes a high altitude experimental flight test platform developed by the University of Kansas (KU) and the National Nuclear Security Administration’s Kansas City Plant (NNSA’s Kansas City Plant) for high altitude payload flight testing. This platform is called the Kansas University Balloon Experiment Satellite (KUBESat). The paper describes the flight test platform and experimental flight test results captured at Fort Riley, KS from characterization of the KCP developed Distributed Transmitter (DTX).
    • HOW WELL DOES A BLIND, ADAPTIVE CMA EQUALIZER WORK IN A SIMULATED TELEMETRY MULTIPATH ENVIRONMENT

      Law, Eugene; NAVAIR (International Foundation for Telemetering, 2004-10)
      This paper will present the results of experiments to characterize the performance of a blind, adaptive constant modulus algorithm (CMA) equalizer in simulated telemetry multipath environments. The variables included modulation method, bit rate, received signal-to-noise ratio, delay of the indirect path relative to the direct path, amplitude of the indirect path relative to the direct path, and fade rate. The main measured parameter was bit error probability (BEP). The tests showed that the equalizer usually improved the data quality in the presence of multipath.
    • IEEE 1451 SMART TRANSDUCER STANDARDS: STATUS, GOING WIRELESS, AND PULLING IT ALL TOGETHER

      Jones, Charles H.; Edwards Air Force Base (International Foundation for Telemetering, 2004-10)
      There are seven parts of the Institute of Electrical and Electronics Engineers (IEEE) 1451 Smart Transducer family of standards either approved, in work, or in review. These documents are providing a nonproprietary set of standards for the implementation of smart transducers (i.e., sensors and actuators). This paper overviews these standards and their status. In particular, the IEEE P1451.5, which addresses wireless transducers, and the IEEE P1451.0, which will provide a common high level architecture for the entire family, will be discussed. A reference model, which is being used as a focus for the IEEE P1451.0, will be introduced to help show the relation between all the members of the family.
    • IEEE P1451.0 CORE TEDS AND COMMON COMMAND SET

      Eccles, Lee H.; Jones, Charles H.; Boeing Commercial Airplane Company; Edwards Air Force Base (International Foundation for Telemetering, 2004-10)
      The Technical Committee 9 (TC-9) of the Institute of Electrical and Electronics Engineers (IEEE) Instrument and Measurement Society wants to ensure that all members of the IEEE 1451 family of standards conform to a common set of basic functionality and have, at some level, a common interface. To this end, the IEEE p1451.0 working group has been chartered to prepare an overarching standard that will define the operation of the other members of the family while still leaving the physical interface up to the various other standards working groups. The IEEE p1451.0 will define the general functionality required of an IEEE 1451 transducer, a common command set that is appropriate to all family members, and the core set of transducer electronic data sheets (TEDS). This paper gives a brief overview of the overall functionality and follows that with a description of the commands and the TEDS.
    • Implementation of A 30-Channel PCM Telemetry Encoder

      Kim, Jung Sup; Jang, Myung Jin; Agency for Defense Development (International Foundation for Telemetering, 2004-10)
      The function of a PCM telemetry encoder, installed in moving vehicles such as automobiles, aircraft, missiles, and artillery projectiles, is to transform many physical variables, such as velocity, shock, temperature, vibration and pressure, into digital data. Also, the encoder is required to make a data frame composed of digital input signals and frame synchronous data. The framed data is supplied to the input of a transmitter. There are three critical considerations in developing a PCM telemetry encoder to be installed in an artillery projectile. The first is the performance consideration, such as sampling rate, data receiving rate and data transmission rate. The second is the size consideration due to the severely limited installation space in an artillery projectile and the last is the power consumption consideration due to limitations of the munition’s power supply. To meet these three considerations, the best alternative is a one-chip solution. Using a commercially available TMS320F2812 DSP chip, we have implemented a 30-channel PCM telemetry encoder to process randomized data frames, composed of 16-channel analog data, 14-channel digital data and 2 frame synchronization data per data frame, at 10Mbps transmission baud rate. This paper describes the structure of the 30-channel PCM telemetry encoder and its performance.
    • IMPLEMENTING A TACTICAL TELEMETRY STYSTEM FOR MULTIPLE LAUNCH ROCKET SYSTEM (MLRS) STOCKPILE RELIABILITY TESTING

      Cox, Corry; Redstone Technical Test Center (International Foundation for Telemetering, 2004-10)
      The Precision Fires Rocket and Missile Systems (PFRMS) Program Office continually undertakes Stockpile Reliability Testing (SRP) to ensure the validity of the accumulated weapons and increase the she lf life of these weapon systems. MLRS is a legacy weapon system that has been undergoing SRP testing for over 20 years. The PFRMS Program Office has a need for a miniature Tactical Telemetry System that will monitor the fuze performance of the MLRS Rocket during SRP testing. This paper will address a technical approach of how a small Tactical Telemetry System could be built to meet this requirement. The Tactical Telemetry system proposed in this paper will monitor fuze functions, operate across the wide environmental spectrum of the SRP tests, and physically fit in the nose area without altering the overall tactical rocket appearance or operation.
    • AN INSTRUMENTATION CONTROL SYSTEM THAT UTILIZES AN AVIONICS PILOT DISPLAY INTERFACE

      Wegener, John A.; Zettwoch, Robert N.; The Boeing Company (International Foundation for Telemetering, 2004-10)
      Flight Test instrumentation control units have traditionally been low-technology units with mechanical switches, readouts, and perhaps an RS232 interface. As the complexity of Flight Test Instrumentation systems and operational requirements increase, and as cockpit space becomes scarce, these control units are no longer sufficient. These control units need to provide capabilities commensurate with the complexity of the instrumentation systems they control. This paper describes an instrumentation control system that uses a Boeing Integrated Defense Systems (IDS) Flight Test Instrumentation designed Instrumentation Control Unit (ICU). The ICU communicates with the avionics system to allow pilot control via existing aircraft displays. By taking advantage of a relatively simple protocol to interface with the avionics system, the substantial cost of reprogramming the avionics software is avoided, and software control is shifted to the Flight Test group, thus allowing a tremendous increase in system flexibility at reasonable cost. Functions of the unit can be changed relatively quickly and inexpensively. This promises a wide range of future applications, such as in-flight monitoring of flight-critical instrumentation parameters by the pilot, control of the instrumentation system via uplink (with pilot override), and real-time in-flight selection of telemetered data streams and parameters. This paper describes the baseline instrumentation control system and requirements to be used on the EA-18G Flight Test Program, plus additional future capabilities.
    • Integrating a Limiter/Filter/Amplifier into a Conformal Wraparound GPS/TM Antenna Substrate

      Ryken, Marv; Davis, Rick; Kujiraoka, Scott; NAVAIR (International Foundation for Telemetering, 2004-10)
      Missile instrumentation systems designers are constantly striving to achieve better performance out of their systems. Optimizing the antenna coverage and decreasing the noise figure are constantly strived for in order to improve system performance. At the same time, weapon systems are becoming smaller with the resulting reduced area for instrumentation. One way to achieve a lower system noise figure is to have the limiter, filter, and amplifier (LFA) located as close to the antenna as possible. This can be achieved by integrating the LFA into the substrate of a conformal wraparound antenna. Not only does this decrease the system noise, but it also saves space in an already crowded missile instrumentation section. This paper details the latest efforts in accomplishing this integration.
    • INTEGRATION OF S-BAND FQPSK TELEMETRY TRANSMITTERS AND GPS-BASED TSPI SYSTEMS WITH CLOSELY SPACED ANTENNAE – A SUCCESS STORY

      Selbrede, Robert W.; Pozmantier, Ronald; JT3 LLC (International Foundation for Telemetering, 2004-10)
      Modern spectrally efficient telemetry transmitters are beginning to find their way on a variety of airborne test platforms. Many of these platforms also include Global Positioning System (GPS)-based Time-Space-Position-Information (TSPI) instrumentation systems. Due to space and other limitations, many of these platforms have demanding antenna placement limitations requiring closely spaced antennas. This paper describes steps taken to identify and mitigate potential interference to GPS-based TSPI instrumentation systems by these new technology transmitters. Equipment characterization was accomplished to determine interference potential of the proposed new transmitters and susceptibility of several GPS TSPI receivers. Several filtering techniques were identified as possible solutions to the anticipated interference problems. Telemetry (TM)/GPS system mockups and laboratory tests of the same were accomplished. Open-air testing was then accomplished to validate laboratory results. Finally, on aircraft tests were accomplished prior to performing any aircraft system modifications. Results of these test efforts are presented for others to consider when planning similar modifications to other platforms.
    • IntelliBus

      Rosenbauer, Tom; Cook, Paul; Rosenbauer Consulting; L-3 Communications (International Foundation for Telemetering, 2004-10)
      The IntelliBus network protocol provides an enabling technology for the next generation data acquisition system. IntelliBus provides greater data acquisition efficiency and reliability compared to other network protocols. This paper discusses the design considerations and implementation of a next generation Data Acquisition System incorporating IntelliBus with emphasis on the advantages of the new architecture over existing acquisition systems.
    • International Telemetering Conference Proceedings, Volume 40 (2004)

      Unknown author (International Foundation for Telemetering, 2004-10)
    • JOINT RANGE SYSTEMS INTEROPERABILITY ACHIEVED THROUGH THE IMPLEMENTATION OF THE TEST AND TRAINING ENABLING ARCHITECTURE (TENA)

      Hudgins, B. Gene; Lucas, Jason; TENA; Eglin Air Force Base (International Foundation for Telemetering, 2004-10)
      The Foundation Initiative 2010 (FI 2010) project, sponsored by the Office of the Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP), has developed and is continuing to refine a common architecture and requisite software used to integrate testing, training, and simulation systems distributed across many DoD test and training range facilities. The Test and Training Enabling Architecture (TENA), has been successfully implemented on DoD and commercial range instrumentation systems, used as a reusable enabler of distributed, live United States Joint Forces Command (USJFCOM) and Joint National Training Capability (JNTC) exercises.
    • LDPC-BASED ITERATIVE JOINT SOURCE/CHANNEL DECODING SCHEME FOR JPEG2000

      Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W.; Vasic, Bane; University of Arizona (International Foundation for Telemetering, 2004-10)
      This paper presents a joint source-channel decoding scheme based on a JPEG2000 source coder and an LDPC channel coder. At the encoder, JPEG2000 is used to perform source coding with certain error resilience (ER) modes, and LDPC codes are used to perform channel coding. At the decoder, after one iteration of LDPC decoding, the output codestream is then decoded by JPEG2000. With the error resilience mode switches on, the source decoder detects the position of the first error within each codeblock of the JPEG2000 codestream. This information is fed back to the channel decoder, and incorporated into the calculation of likelihood values of variable nodes for the next iteration of LDPC decoding. Our results indicate that the proposed method has significant gains over conventional separate channel and source decoding.
    • LEGACY SENSORS GO WIRELESS WITH IEEE P1451.5

      Sinclair, Robert; Beech, Russell; Jones, Kevin; Jones, Charles H.; NVE Corporation; Edwards Air Force Base (International Foundation for Telemetering, 2004-10)
      The wireless sensor concept has been hindered in the past by the large number of components needed to add the wireless transceiver feature and the additional power consumption needed for that feature. This has been resolved by incorporating all the wireless components into a single, low power modular circuit. Intelligence is being added to legacy sensors to make them Institute of Electrical and Electronics Engineers (IEEE) 1451.4 compatible with an element called a Sensor Identification Transducer Electronic Data Sheet (SITEDS), which contains the Transducer Electronics Data Sheet (TEDS) for that sensor. All the sensor interface parameters are automatically configured by a module called the Universal Smart Transducer Interface Module (USTIM) using the TEDS input from the respective sensor’s SITEDS. An IEEE P1451.5 compatible wireless interface can be incorporated into the SITEDS with the transceiver module giving the legacy sensor full wireless capability.
    • LIDAR OUTGOING LASER ENERGY MEASUREMENT SYSTEM

      Reagan, John; Gibbons, Jasper; Moss, David; University of Arizona (International Foundation for Telemetering, 2004-10)
      A flexible system has been designed to accurately measure and average the outgoing laser energy of a micro-pulse LIDAR unit (MPL). This system incorporates specifically designed analog measurement circuitry interfaced with a microcontroller, allowing researchers to manage experiments from a personal computer. The final system produces a linearly proportional response between an incident laser energy input and the analog and digital circuitry’s output, accurate to within 0.1%. Custom designed algorithms allow the system to average the energy measured in a series of pulses. Each series can range on the order of tens of thousands of pulses.
    • MAINTAINING SIGNAL FIDELITY WHILE USING A PACKETIZED TRANSPORT SYSTEM

      Hankey, Robert L.; Krasinski, Kevin; Apogee Labs, Inc. (International Foundation for Telemetering, 2004-10)
      Packetizing data for transport over a networked system corrupts embedded information such as absolute and relative timing from the data. Without this information, it is difficult to reproduce the data with its original timing restored. Absolute timing is the time between data points within a given channel of data. Relative timing is the time relationship between data points from two or more channels of data. Having this restored timing allows the use of existing equipment for analysis and eliminates the need for expensive custom designed equipment to analyze the recovered data. Using a packetizing solution that transports information about the data stream and transport packets that are broken up by system wide timing allows us to accomplish this.
    • MERGING TELEMETRY DATA FROM MULTIPLE RECEIVERS

      Wilson, Michael J.; US Army Research Laboratory (International Foundation for Telemetering, 2004-10)
      Multiple receiver telemetry systems are common in the aeroballistics test and evaluation community. These systems typically record telemetry data independently, requiring post-flight data processing to produce the most accurate combination of the available data. This paper addresses the issues of time synchronization between multiple data sources and determination of the best choice for each data word. Additional filtering is also developed for the case when all available data are corrupted. The performance of the proposed algorithms is presented.
    • MIMO CHANNEL TIME VARIATION AS A FUNCTION OF MOBILE USER VELOCITY

      Panagos, Adam G.; Kosbar, Kurt; University of Missouri – Rolla (International Foundation for Telemetering, 2004-10)
      The analysis of multiple-input multiple-output (MIMO) communication systems often assumes a static, or quasi-static, environment. Platform motion and changes in the environment makes this an unreasonable assumption for many telemetry applications. This paper uses computer simulations to characterize the time variation of MIMO channel parameters when there is relative motion between the transmitter and receiver. These simulation results yield explicit time intervals over which a MIMO channel can be considered static for a given relative velocity and propagation environment. These results can be used to predict the practical limitations of proposed MIMO system algorithms.