• Implementing Real-time Provisioning for Space Link Extension (SLE) Service Instances

      Lokshin, Kirill; Puri, Amit; Irvin, Dana; Ross, Frank; Rush, Rebecca; Ingenicomm, Inc. (International Foundation for Telemetering, 2012-10)
      Space Link Extension (SLE) is a set of recommended standards for mission cross support developed by the Consultative Committee for Space Data Systems (CCSDS). The SLE recommendations define protocols for extending the space link from ground terminals to other facilities deeper within a ground network, allowing distributed access to space link telecommand and telemetry services. The SLE protocols are widely used to provide cross support between sites, programs, and agencies. In traditional SLE deployments, individual service instances have been manually provisioned well in advance of the commencement of cross support for a particular mission, and hardware and software resources have been allocated to those service instances at the time of provisioning. While valid, this approach requires that dedicated resources be provided for each mission and service instance, and limits an SLE provider's ability to reallocate resources in real time based on system availability or other factors. This paper discusses an alternative approach to SLE service provisioning, in which individual service instances are assigned resources from a common resource pool at the time that each service instance is initialized. The paper addresses the key design elements and technical tradeoffs involved in this approach, and discusses the potential benefits with regard to load balancing, equipment reuse, and resiliency against system failure.
    • Design of a Semi-Autonomous Quadrotor Aircraft

      Kosbar, Kurt; Hickle, Mark; Wilson, Alexander; Kientzy, Joshua; Myers, Matthew; Missouri University of Science and Technology (International Foundation for Telemetering, 2012-10)
      This paper describes the design and construction of a semi-autonomous quadrotor aircraft approximately 1 meter in diameter. Because of the mechanical simplicity of the aircraft, the design challenges primarily centered on the electrical and computer engineering (ECE) tasks, and was used as a capstone design experience in an undergraduate ECE program. An onboard microcontroller based system uses a network of digital sensors and differential thrust for autonomous attitude control. A wireless telemetry and command link allows a user to monitor the vehicle, control its direction of flight, and for flight safety control.
    • Relying on Telemetry for Mission Critical Decisions: Lessons Learned from NASA's Reusable Launch Vehicle for Use on the Air Force's Next Generation Reusable Launch Vehicle

      Losik, Len; Failure Analysis (International Foundation for Telemetering, 2012-10)
      The U.S. Air Force's next generation reusable booster (NGRSB) offers the opportunity for the Space Command to use intelligent equipment for decision making replacing personnel, increasing safety and mission assurance by removing decisions from program management personnel who may not have had any flight-test experience. Adding intelligence to launch vehicle and spacecraft equipment may include requiring the builder to use a prognostic and health management (PHM) program. The PHM was added to NASA's aircraft programs in 2009 and we have requested NASA HQ and NASA Marshal Space Flight Center adopt the NASA PHM in the procurement contracts used on the new Space Launch Systems, NASA's congressionally mandated replacement for the Space Shuttle. Space Vehicle Program managers often make decisions for on-orbit spacecraft without ever having on-orbit space flight experience. Intelligent equipment would have eliminated the catastrophic failures on the NASA Space Shuttle Challenger and Columbia. These accidents occurred due to the lack of space vehicle subsystem engineering personnel analyzing real-time equipment telemetry presented on strip chart and video data prior to lift off during pre-launch checkout for the Space Shuttle Challenger and the lack of space vehicle real-time equipment telemetry for Columbia. The PHM requires all equipment to include analog telemetry for measuring the equipment performance and usable life determination in real-time and a prognostic analysis completed manually will identify the equipment that will fail prematurely for replacement before launch preventing catastrophic equipment failures that may cause loss of life.
    • Spectrum Management in Telemetry Networks

      Fofanah, Jemilatu; Morgan State University (International Foundation for Telemetering, 2012-10)
      Spectrum efficiency is the key challenge in modern telemetry systems. Network telemetry requires moving from a dedicated link structure to a network structure which is a very complex problem and requires spectrum management tools. A mixed network structure has been previously proposed for networked telemetry which employs a combination of cellular and Adhoc networks. Significant improvements in QoS and clustering of the complex aeronautical networks have been observed and published in several venues. However in the earlier work routing within the Ad-hoc clusters has not been addressed and the clustering has been done using an enhanced K-means clustering. In this paper, a well known clustering algorithm is adopted in the mixed network concept and clustering of the Ad-hoc nodes are optimized based on shortest route to the gateway and minimum hop count criteria. The proposed clustering technique in this paper leads to a jointly optimized cluster-topology and gateway-selection solution a complex aeronautical network. Simulation results towards the end of this paper illustrate that with the proposed method, cluster configuration is locally optimized and the best gateway for each cluster is successfully selected. With addition of traffic measures to the consideration in the routing, the proposed solution will leads to efficient spectrum allocation and improved QoS.
    • Decision Feedback Equalization for SOQPSK

      Rice, Michael; Narumanchi, Gayatri; Saquib, Mohammad; Brigham Young University; University of Texas at Dallas (International Foundation for Telemetering, 2012-10)
      This paper investigates a fractionally-spaced decision-feedback equalization technique for Shaped Offset Quadrature Phase Shift Keying (SOQPSK). The kernel of the block-based feedback algorithm is to estimate the intersymbol interference and cancel it from the samples used to make the bit decisions. This process refines the bit estimates sequentially, thereby increasing the probability of obtaining accurate estimates. The simulated bit error rate performance of the decision-feedback technique shows a 1 dB improvement over MMSE-equalized SOQPSK-TG over channels derived from multipath channel measurements at Cairns Army Airfield, Ft. Rucker, Alabama and Edwards AFB, California.
    • Channel Modeling Based on Bidirectional Analytic Ray Tracing and Radiative Transfer (RT²)

      Xu, Feng; Hue, Yik-Kiong; Ponnaluri, Satya P.; Intelligent Automation Inc. (International Foundation for Telemetering, 2012-10)
      The extremely large electrical-size and complexity of terrain scene poses great challenge in channel modeling of aeronautic telemetry. It becomes even more difficult if severe multipath and fading present due to scattering and attenuation of ground, terrain objects and precipitation [Rice, 2004]. This is critical in more sophisticated test scenarios involving low flying unmanned air vehicles and helicopters tested over water at high sea states, in hilly terrain, or even over urban environment. Conventional ray tracing and simple Fresnel reflection are not sufficient to characterize such complex channels. Hence, the novel bidirectional analytic ray tracing and radiative transfer (RT²) is proposed for advanced telemetry channel modeling.
    • Implementing Space Link Extension (SLE) for Very High Rate Space Links

      Lokshin, Kirill; Puri, Amit; Irvin, Dana; Ross, Frank; Rush, Rebecca; Ingenicomm, Inc. (International Foundation for Telemetering, 2012-10)
      Space Link Extension (SLE) is a set of recommended standards for mission cross support developed by the Consultative Committee for Space Data Systems (CCSDS). The SLE recommendations define protocols for extending the space link from ground terminals to other facilities deeper within a ground network, allowing distributed access to space link telecommand and telemetry services. The SLE protocols are widely used to provide cross support between sites, programs, and agencies. Traditional SLE protocol implementations have been limited in their ability to support high data rates and large numbers of concurrent service instances. Such limited solutions were sufficient to support the needs of spacecraft health and status or older, low-rate science data. More recent missions, however, have required significantly increased data rates on both uplink and downlink paths, necessitating a new approach to SLE implementation. This paper discusses the design principles involved in implementing the SLE protocols in support of high channel and aggregate mission data rates, with particular focus on the tradeoffs necessary to provide SLE link capability at sustained single-channel rates above 1 Gigabit per second. The paper addresses significant performance bottlenecks in the conventional SLE protocol stack and proposes potential mitigation strategies for them.
    • Autonomous Terrain Mapping Using COTS Hardware

      Kosbar, Kurt; Anderson, James; Honse, Adam; Missouri University of Science and Technology (International Foundation for Telemetering, 2012-10)
      The paper describes the development of a robotic platform which can autonomously map terrain using a COTS infrared imaging and ranging system. The robotic system is based on an omnidirectional platform, and can navigate typical commercial indoor environments. An on-board processor performs surface reconstruction, and condenses the point clouds generated by the ranging system to mesh models which can be more easily stored and transmitted. The processor then correlates new frames with the existing world model by using sensor odomerty. The robot will autonomously determine the best areas of the environment to map, and gather complete three dimensional color models of arbitrary environments.
    • Measurement of Visibility Thresholds for Compression of Stereo Images

      Marcellin, Michael W.; Bilgin, Ali; Feng, Hsin-Chang; University of Arizona (International Foundation for Telemetering, 2012-10)
      This paper proposes a method of measuring visibility thresholds for quantization distortion in JPEG2000 for compression of stereoscopic 3D images. The crosstalk effect is carefully considered to ensure that quantization errors in each channel of stereoscopic images are imperceptible to both eyes. A model for visibility thresholds is developed to reduce the daunting number of measurements required for subjective experiments.
    • An Open Systems Architecture for Telemetry Receivers

      Parker, Peter; Nelson, John; Pippitt, Mark; MIT Lincoln Laboratory (International Foundation for Telemetering, 2012-10)
      An open systems architecture (OSA) is one in which all of the interfaces are fully defined, available to the public, and maintained according to a group consensus. One approach to achieve this is to use modular hardware and software and to buy commercial, off-the-shelf and commodity hardware. Benefits of an OSA include providing easy access to the latest technological advances in both hardware and software, enabling net-centric operations, and allowing a flexible design that can easily change as the needs of customers may change. This paper will provide details of an OSA system designed for a telemetry receiver and list the benefits of OSA for the telemetry community.
    • Design of a Radio channel Simulator for Aeronautical Communications

      Montaquila, Roberto V.; Iudice, Ivan; Castrillo, Vittorio U.; C.I.R.A. (International Foundation for Telemetering, 2012-10)
      The goal of this paper is to implement a model of multipath fading in a radio channel simulator for aeronautical applications. When developing a wireless communications system, it is useful to perform simulations of the radio context in which the system has to operate. A radio link is substantially composed by three parts: transmitting segment, transmission channel and receiving segment. We focus our attention on the radio channel propagation. We proposed two geometrical models of a territory corresponding to a determined flight area and, after importing the data needed to estimate our parameters, we compared our results with the channel soundings in literature, obtaining comparable values.
    • A Wireless Sensor Network Powered by Microwave Energy

      Adams, Emily; Albagshi, Ayman; Alnatar, Khaleel; Jacob, Gregory; Mogk, Nathan; Sparrold, Alexis; University of Arizona (International Foundation for Telemetering, 2012-10)
      Systems that monitor environments often rely on cumbersome wires to supply power to the sensing equipment or batteries that require monitoring and replacement. As technologies continue to advance, the use of self-sustaining, wireless powering becomes more essential to satisfy challenging requirements that necessitate continuous measurement and general functionality. This paper focuses on the creation of a wireless sensor network with emphasis on the implementation of wirelessly charged sensing nodes by utilizing microwaves. Three subsystems make up this "proof of concept" wireless sensor system: a power transmitting base station, three sensor nodes, and a communication base station. Interfacing and power regulation are of the utmost importance in order to ensure all of the subsystems are able to communicate with one another and power all necessary functions. The power transmitting base station transmits microwaves to the nodes. A rectenna on each node converts the transmitted microwaves into DC power. Each node contains sensors to monitor the temperature and light of the environment. For the communication aspect of the system, Zigbee protocol, which belongs to IEEE 802.15.4 protocol, is used fore wireless communication between the base station and the nodes. Through the combination of power regulation, microwave energy, and radio transmission, users are able to utilize this system to collect environmental sensor data wirelessly.
    • Implementation of the AeroRP and AeroNP Protocols in Python

      Alenazi, Mohammed J. F.; Çetinkaya, Egemen K.; Rohrer, Justin P.; University of Kansas (International Foundation for Telemetering, 2012-10)
      The domain-specific ANTP protocol suite consisting of AeroTP, AeroRP, and AeroNP has been developed to cope with the challenges in highly-dynamic airborne telemetry networks. These protocols have been designed and modelled through simulation methodology. In this paper, we present an implementation of the AeroRP and AeroNP components in Python. Initially, we implement and test through an emulated wireless environment on the PlanetLab testbed. Further, we present our prototype implementation that is deployed in a real-world wireless environment using radio-controlled vehicles.
    • The Design of Dynamic Calibration Procedure

      Leite, Nelson Paiva Oliveira; Sousa, Lucas Benedito dos Reis; Instituto de Pesquisas e Ensaios em Voo (International Foundation for Telemetering, 2012-10)
      The execution of experimental Flight Test Campaign (FTC) provides all information required for the aircraft operation and certification. Nowadays all information gathered during a FTC is provided by the Flight Test Instrumentation System (FTI) that is basically a measurement system. Typically for all FTI parameters, the estimation of the calibration coefficients that minimizes most of systematic errors and its associated uncertainty is carried out by a Static Calibration Process. To execute this task the Brazilian Institute of Research and Flight Test (Instituto de Pesquisa e Ensaios em Voo - IPEV) developed the Sistema de Automação do Laboratório de Ensaios em Voo (SALEV©) which is fully compliant with the calibration and uncertainty expression standards. For some parameters (i.e. Static Pressure) the sensor installation particularities (i.e. Pressure tapping) introduces low pass filtering characteristics into the measurement chain. In this case the measurement accuracy will be jeopardized when executing high-dynamic test points (i.e. Spin Tests). To overcome this issue the IPEV research and development group introduced a dynamic calibration process for flight test parameters that requires the knowledge of the actual Transfer Function (TF). The problem now is to simulate an impulsive input for the TF characterization which is too complex. To solve this issue a new calibration procedure was developed and evaluated for the determination of the FTI dynamic response. SALEV© was used to simulate a step input instead of an impulse. Then filtered and unfiltered data was properly compared for the determination of the TF. Preliminary test results show satisfactory performance.
    • Advances in Non-Foster Circuit Augmented, Broad Bandwidth, Metamaterial-Inspired, Electrically Small Antennas

      Zhu, Ning; University of Arizona (International Foundation for Telemetering, 2012-10)
      There are always some intrinsic tradeoffs among the performance characteristics: radiation efficiency, directivity, and bandwidth, of electrically small antennas (ESAs). A non-Foster enhanced, broad bandwidth, metamaterial-inspired, electrically small, Egyptian axe dipole (EAD) antenna has been successfully designed and measured to overcome two of these restrictions. By incorporating a non-Foster circuit internally in the near-field resonant parasitic (NFRP) element, the bandwidth of the resulting electrically small antenna was enhanced significantly. The measured results show that the 10 dB bandwidth (BW10dB) of the non-Foster circuit-augmented EAD antenna is more than 6 times the original BW10dB value of the corresponding passive EAD antenna.
    • Using Analog Telemetry to Measure Usable Life Invasively on the Air Force's Next Generation Reusable Space Booster Equipment

      Losik, Len; Failure Analysis (International Foundation for Telemetering, 2012-10)
      Measuring and confirming equipment usable life that passes dynamic environmental factory acceptance testing (ATP) will ensure no equipment will fail prematurely increasing safety and mission assurance on the Air Force's Next Generation Reusable Space Booster (NGRSB). The same analog telemetry generated and analyzed during ATP used to measure and confirm equipment performance per the procurement contract can serve both purposes. Since the NGRSB payload lift requirement is the same as the EELV, the need for exotic combinations of reusable and throwaway components is unnecessary unless they yield new level of reliability, maintainability and supportability. A prognostics and health management (PHM) program exploits the presence of non-repeatable transient events (NRTE) (a.k.a. accelerated aging) that is missed during any engineering analysis in equipment analog telemetry to calculate equipment remaining usable life/mission life. Without an invasive physical measurement of equipment usable life, satellite and launch vehicle equipment reliability is dominated by premature equipment failures. If the Air Force continues to calculate NGRSB equipment mission life on paper, the NGRSB equipment reliability will also be dominated by infant mortality failures just as all expendable launch vehicle equipment is. The Air Force's, Markov-based reliability paradigm used to procure Air Force satellites and launch vehicles, results in space mission infant mortality failure rate as high as 25%/year. According to the Aerospace Corporation, Air Force space vehicle equipment that passes both equipment level and vehicle level ATP has a 70% likelihood of failing prematurely within 45 days after arriving in space. If a PHM is used on the NGRSB, it stops premature failures and lowers life overall cycle cost providing superior reliability, maintainability, supportability and availability for future Air Force space missions that are too important and too expensive to fail prematurely.
    • Development of a Variable Output Power, High Efficiency Programmable Telemetry Transmitter Using GaN Amplifier Technology

      Oder, Stephen; Arinello, Paula; Caron, Peter; Crawford, Scott; McGoldrick, Stephen; Bajgot, Douglas; Cobham Electronic Systems (International Foundation for Telemetering, 2012-10)
      Cobham Electronic Systems, Inc. has developed a field-programmable telemetry transmitter module for higher-power (0.1W to 25W) airborne telemetry applications. A key feature of the transmitter is high DC to RF conversion efficiency over the entire variable output power range of 25dB through the use of GaN amplifiers. This high efficiency is realized by using a variable voltage DC-DC converter and dynamic bias control of the GaN amplifier elements. This feature is useful in that output power can be tailored to mission requirements and timelines, thereby extending battery life and increasing operation time. The transmitter receives configuration commands and can be programmed through an external data port. The transmitter can be configured for RF power and frequency over the telemetry S-Band frequency range, and has multiple data rates. The unit consists of RF, digital and power supply circuits. The RF transmitter is a PCM-FM type with a phase-locked loop, driver amplifiers, a power amplifier and a digital processor for RF control. The unit contains a digital processor, FPGA's, and flash memory. The power supplies contains all the regulator circuits to supply power to the rest of the unit, variable output drain voltage to the GaN devices, EMI filtering, under/overvoltage protection, a temperature sensor and a digital processor for power control. The electronics are housed in a compact aluminum housing.
    • Novel Broadband Direction of Arrival Estimation Using Luneburg Lens

      Yu, Xiaoju; Liang, Min; Sabory-Garcia, Rafael; University of Arizona (International Foundation for Telemetering, 2012-10)
      A broadband passive direction finding system utilizing Luneburg lens has been investigated. With the simulated power level distribution at the detectors mounted on a Luneburg lens, both Cramér-Rao bound (CRB) and the root mean square error (RMS) based on the Correlation Algorithm (CA) for the direction of arrival (DoA) estimation have been derived and calculated. Guidelines on how to design the Luneburg lens detecting system have been studied. Finally, as a proof-of-concept demonstration, the DoA performance of a Luneburg lens fabricated using the polymer jetting technology with five detectors 10° equally spaced to receive the azimuth signal from -20° to 20° is demonstrated.
    • Overview of the Telemetry Network System (TMNS) RF Data Link Layer

      Kaba, James; Connolly, Barbara; SRI International (International Foundation for Telemetering, 2012-10)
      As the integrated Network Enhanced Telemetry (iNET) program prepares for developmental flights tests, refinements are being made to the Radio Access Network Standard that ensures interoperability of networked radio components. One key aspect of this interoperability is the definition of Telemetry Network System (TmNS) RF Data Link Layer functionality for conducting efficient communications between radios in a TDMA (Time Division Multiple Access) channel sharing scheme. This paper examines the overall structure of the TmNS RF Data Link Layer and provides an overview of its operation. Specific topics include Medium Access Control (MAC) scheduling and framing in the context of a burst-oriented TDMA structure, link layer encryption, the priority-enabled Automatic Repeat reQuest (ARQ) protocol, high-level network packet and link control message encapsulation, payload segmentation and reassembly, and radio Link Layer Control Messaging.
    • A Novel Zigzag Scanning Concept for H.264/AVC

      Hyun, Myung Han; Yu, Jae Taeg; Lee, Sang Bum; Agency for Defense Development (International Foundation for Telemetering, 2012-10)
      In this paper, a novel zigzag scanning concept of quantized coefficients for H.264/AVC is introduced. In order to scan the quantized coefficients efficiently, the statistical occurrence values of the quantized coefficients after the final mode decision are utilized. We develop a zigzag scanning pattern by reordering the statistical occurrence values in descending order. In addition, we consider the temporal and spatial correlation among the frames to classify the zigzag scanning pattern. In particular, we focus on the macroblock level zigzag scanning so that the proposed method will have the different zigzag scanning pattern based on the macroblock. Experimental results show that the proposed scheme reduces the total bits up to 4.05% and 3.67% while introducing either negligible loss of video quality for intra- and inter mode, respectively.