• Machine Vision and Autonomous Integration Into an Unmanned Aircraft System

      Dianics, James; Fasel, Hermann F.; Marcellin, Michael W.; Alexander, Josh; Blake, Sam; Clasby, Brendan; Shah, Anshul Jatin; Van Horne, Chris; Van Horne, Justin; University of Arizona (International Foundation for Telemetering, 2012-10)
      The University of Arizona's Aerial Robotics Club (ARC) sponsored two senior design teams to compete in the 2011 AUVSI Student Unmanned Aerial Systems (SUAS) competition. These teams successfully design and built a UAV platform in-house that was capable of autonomous flight, capturing aerial imagery, and filtering for target recognition but required excessive computational hardware and software bugs that limited the systems capability. A new multi-discipline team of undergrads was recruited to completely redesign and optimize the system in an attempt to reach true autonomous real-time target recognition with reasonable COTS hardware.
    • Measurement of Visibility Thresholds for Compression of Stereo Images

      Marcellin, Michael W.; Bilgin, Ali; Feng, Hsin-Chang; University of Arizona (International Foundation for Telemetering, 2012-10)
      This paper proposes a method of measuring visibility thresholds for quantization distortion in JPEG2000 for compression of stereoscopic 3D images. The crosstalk effect is carefully considered to ensure that quantization errors in each channel of stereoscopic images are imperceptible to both eyes. A model for visibility thresholds is developed to reduce the daunting number of measurements required for subjective experiments.
    • Merging Multiple Telemetry Files from Widely Separated Sources for Improved Data Integrity

      Endress, William; Raytheon Missile Systems (International Foundation for Telemetering, 2012-10)
      Merging telemetry data from multiple data sources into a single file, provides the ability to fill in gaps in the data and reduce noise by taking advantage of the multiple sources. This is desirable when analyzing the data as there is only one file to work from. Also, the analysts will spend less time trying to explain away gaps and spikes in data that are attributable to dropped and noisy telemetry frames, leading to more accurate reports. This paper discusses the issues and solutions for doing the merge.
    • Minimizing Interference in Simultaneous Operations between GPS and Other Instrumentation Systems

      Kujiraoka, Scott; Troublefield, Robert; Fielder, Russell; NAVAIR (International Foundation for Telemetering, 2012-10)
      Currently many airborne platforms (missiles, targets, and projectiles) contain multiple instrumentation systems to cover the functions of GPS and either telemetry, beacon tracking and/or flight termination. Most of these platforms are not very large, so mounting of various antennas to support these functions are physically close to each other. As a result, unwanted interference (in the form of RF coupling between them) is unavoidable. This paper will discuss the design considerations involved to minimize this interference as well as some lessons learned with its implementation.
    • Multi-Band (L/S/C) Nested Concentric Cavity Coaxial Mode RF Feed for Autotrack Telemetry Systems - Part II: Implementation

      Myers, Robert; Hoory, Yossi; Krepner, Itzik; Nahshon, Ofir; Pein, Joe; Voin, Miron; NAVAIR Atlantis Test Range; ORBIT Communications System (International Foundation for Telemetering, 2012-10)
      This is the continuation of a paper given at ITC 2010 regarding the design, development, production and testing of a novel Tri-Band auto-tracking / receive / transmit feed technology combining dual polarization with multiple frequency band coverage (L/S/C) into a single feed that can be fitted onto new or existing antenna systems. This technology reduces footprint and minimizes life cycle cost, both of which are important considerations for both commercial and military communities. This multiband feed design consists of coaxial, concentric waveguide cavities operating in TE11 and TE21 modes (Patent Pending). This paper specifically addresses the manufacture, integration, acceptance testing, installation and use of two 10-Foot / 3.0-Meter Tri-band Telemetry Tracking Systems installed and operated at Patuxent River NAS, Maryland under the auspices of NAVAIR Atlantic Test Range, Telemetry Systems Branch. What is described herein is the final configuration as delivered, antenna test range results, on-site results, and lessons-learned during the development and implementation phases. Charts and tables are presented to assist with clarification of relevant data for the reader.
    • A Multi-Band Transceiver Design for L/S/C-Band Telemetry

      Thompson, Willie L., II; Morgan State University (International Foundation for Telemetering, 2012-10)
      The Serial Streaming Telemetry infrastructure is being augmented with the Telemetry Network System, which is a net-centric infrastructure requiring bi-directional communications between the test article segment and the ground station segment. As a result, future radio segments must implement transceiver architecture to support bi-directional communications. This paper presents a design methodology for a multi-band transceiver design. The design methodology is based upon the Weaver architecture to provide coarse selection between the telemetry bands. Utilization of the Weaver architecture allowed for the optimization of multiple transmitter and receiver channels into single channels to support the L/S/C-Band frequency allocations. System-level simulation is presented to evaluate the feasibility of the transceiver design for a multi-band, multi-mode software-defined radio (SDR) platform in support of Telemetry Network System.
    • Multiple-Input Multiple Output System on a Spinning Vehicle with Unknown Channel State Information

      Kosbar, Kurt; Muralidhar, Aditya; Missouri University of Science and Technology (International Foundation for Telemetering, 2012-10)
      This paper presents the investigations into the performance of a multiple-input multiple-output (MIMO) system with its transmitters on a spinning vehicle and no available channel state information (CSI) at the transmitter or the receiver. The linear least squares approach is used to estimate the channel and the estimation error is measured. Spinning gives rise to a periodic component in the channel which can be estimated based on the spin rate relative to the data rate of the system. It is also determined that spinning causes the bit error rate of the system to degrade by a few dB.
    • NASA Remote Imaging System Acquisition (RISA) Multispectral Imager Development Updates

      Grubbs, Elmer; Marcellin, Michael W.; Martin, Samuel; Mayer, Jackeline; Owan, Parker; Stephens, Kyle; Suring, Lee; University of Arizona (International Foundation for Telemetering, 2012-10)
      The NASA Remote Imaging System Acquisition (RISA) project is a prototype camera intended to be used by future NASA astronauts. NASA has commissioned the development of this engineering camera to support new mission objectives and perform multiple functions. These objectives require the final prototype to be radiation hardened, multispectral, completely wireless in data transmission and communication, and take high quality still images. This year's team was able to successfully develop an optical system that uses a liquid lens element for focus adjustment. The electrical system uses an Overo Fire computer-on-module (COM) developed by Gumstix. The OMAP processor onboard handles all communication with a monochromatic CMOS sensor, liquid lens control circuitry, pixel data acquisition and processing, and wireless communication with a host computer.
    • Novel Broadband Direction of Arrival Estimation Using Luneburg Lens

      Yu, Xiaoju; Liang, Min; Sabory-Garcia, Rafael; University of Arizona (International Foundation for Telemetering, 2012-10)
      A broadband passive direction finding system utilizing Luneburg lens has been investigated. With the simulated power level distribution at the detectors mounted on a Luneburg lens, both Cramér-Rao bound (CRB) and the root mean square error (RMS) based on the Correlation Algorithm (CA) for the direction of arrival (DoA) estimation have been derived and calculated. Guidelines on how to design the Luneburg lens detecting system have been studied. Finally, as a proof-of-concept demonstration, the DoA performance of a Luneburg lens fabricated using the polymer jetting technology with five detectors 10° equally spaced to receive the azimuth signal from -20° to 20° is demonstrated.
    • A Novel Zigzag Scanning Concept for H.264/AVC

      Hyun, Myung Han; Yu, Jae Taeg; Lee, Sang Bum; Agency for Defense Development (International Foundation for Telemetering, 2012-10)
      In this paper, a novel zigzag scanning concept of quantized coefficients for H.264/AVC is introduced. In order to scan the quantized coefficients efficiently, the statistical occurrence values of the quantized coefficients after the final mode decision are utilized. We develop a zigzag scanning pattern by reordering the statistical occurrence values in descending order. In addition, we consider the temporal and spatial correlation among the frames to classify the zigzag scanning pattern. In particular, we focus on the macroblock level zigzag scanning so that the proposed method will have the different zigzag scanning pattern based on the macroblock. Experimental results show that the proposed scheme reduces the total bits up to 4.05% and 3.67% while introducing either negligible loss of video quality for intra- and inter mode, respectively.
    • An Open Systems Architecture for Telemetry Receivers

      Parker, Peter; Nelson, John; Pippitt, Mark; MIT Lincoln Laboratory (International Foundation for Telemetering, 2012-10)
      An open systems architecture (OSA) is one in which all of the interfaces are fully defined, available to the public, and maintained according to a group consensus. One approach to achieve this is to use modular hardware and software and to buy commercial, off-the-shelf and commodity hardware. Benefits of an OSA include providing easy access to the latest technological advances in both hardware and software, enabling net-centric operations, and allowing a flexible design that can easily change as the needs of customers may change. This paper will provide details of an OSA system designed for a telemetry receiver and list the benefits of OSA for the telemetry community.
    • An Opportunistic Relaying Scheme for Optimal Communications and Source Localization

      Perez-Ramirez, Javier; New Mexico State University (International Foundation for Telemetering, 2012-10)
      The selection of relay nodes (RNs) for optimal communication and source location estimation is studied. The RNs are randomly placed at fixed and known locations over a geographical area. A mobile source senses and collects data at various locations over the area and transmits the data to a destination node with the help of the RNs. The destination node not only needs to collect the sensed data but also the location of the source where the data is collected. Hence, both high quality data collection and the correct location of the source are needed. Using the measured distances between the relays and the source, the destination estimates the location of the source. The selected RNs must be optimal for joint communication and source location estimation. We show in this paper how this joint optimization can be achieved. For practical decentralized selection, an opportunistic RN selection algorithm is used. Bit error rate performance as well as mean squared error in location estimation are presented and compared to the optimal relay selection results.
    • Optimized Constellation Mappings for Adaptive Decode-and-Forward Relay Networks using BICM-ID

      Borah, Deva K.; Kumar, Kuldeep; New Mexico State University (International Foundation for Telemetering, 2012-10)
      In this paper, we investigate an adaptive decode-and-forward (DF) cooperative diversity scheme based on bit interleaved coded modulation with iterative decoding (BICM-ID). Data bits are first encoded by using a convolutional code and the coded bits after an interleaver are modulated before transmission. Iterative decoding is used at the receiver. Optimized constellation mapping is designed jointly for the source and the relay using a genetic algorithm. A novel error performance analysis for the adaptive DF scheme using BICM-ID is proposed. The simulation results agree well with the analytical results at high signal-to-noise ratio (SNR). More than 5.8 dB gain in terms of SNR over the existing mappings is achieved with proposed mappings.
    • Overview of the Telemetry Network System (TMNS) RF Data Link Layer

      Kaba, James; Connolly, Barbara; SRI International (International Foundation for Telemetering, 2012-10)
      As the integrated Network Enhanced Telemetry (iNET) program prepares for developmental flights tests, refinements are being made to the Radio Access Network Standard that ensures interoperability of networked radio components. One key aspect of this interoperability is the definition of Telemetry Network System (TmNS) RF Data Link Layer functionality for conducting efficient communications between radios in a TDMA (Time Division Multiple Access) channel sharing scheme. This paper examines the overall structure of the TmNS RF Data Link Layer and provides an overview of its operation. Specific topics include Medium Access Control (MAC) scheduling and framing in the context of a burst-oriented TDMA structure, link layer encryption, the priority-enabled Automatic Repeat reQuest (ARQ) protocol, high-level network packet and link control message encapsulation, payload segmentation and reassembly, and radio Link Layer Control Messaging.
    • PCM to Ethernet: A Hybrid System Used to Certify the Next Generation of Data Transfer Technology

      de Souza, Luiz Fernando; Rios, Domingos Henrique Beolchi; Willis, Stephen; Embraer S. A.; Curtiss-Wright Controls Avionics & Electronics (International Foundation for Telemetering, 2012-10)
      The last few years has witnessed the adoption of Ethernet technology in an increasing number of FTI applications. This is a result of both the growing acceptance within the community of the application of the technology, the availability of suitable hardware and the desire for increased parameters/higher data rates that PCM is unable to accommodate. However, migrating from an existing PCM based networked system to Ethernet is not typically just a case of exchanging the necessary hardware. There can be a range of other issues that require addressing such as ensuring determinism and realizing previous investment in hardware - this paper highlights and discusses several of these. This paper presents a case study of an FTI application on the Embraer Legacy 500 where a hybrid PCM and Ethernet configuration was implemented. One reason for this configuration was that it was necessary to prove to the Brazilian Aeronautical Agency that the data acquired using an Ethernet system was as reliable as that acquired using PCM. An additional reason was that such a system was seen as a safe stepping stone to a full Ethernet system for programs in the near future which are planning to fully migrate to an Ethernet architecture.
    • PCM vs. Networking: Spectral Efficiency Wars - A Pragmatic View

      Araujo, Maria S.; Abbott, Ben A.; Southwest Research Institute (International Foundation for Telemetering, 2012-10)
      The expected efficiency of network-based telemetry systems vs. the tried and true PCM-based approaches is a debated topic. This paper chooses to use a lighthearted voice to pull the two sides of the "war" to a table of negotiation based on metrics. Ultimately, focusing on metrics that truly define efficiency is the key to understanding the varying points of view. A table of these metrics along with the "why and when" criteria for their use is presented based on historic mathematical information theory, true flight test data requirements, and lab analysis. With these metrics, the negotiation and reasonable compromises in the war may become clear. In other words, this paper attempts to provide a methodology that can be used by the community to aid in choosing the appropriate (or good enough) technologies for current and future telemetry testing demands.
    • Performance Evaluation of the AeroTP Protocol in Comparison to TCP NewReno, TCP Westwood, and SCPS-TP

      Nguyen, Truc Anh N.; Gangadhar, Siddharth; Umapathi, Greeshma; University of Kansas (International Foundation for Telemetering, 2012-10)
      Due to the unique characteristics of highly dynamic airborne telemetry environments, TCP when deployed in such networks suffers significant performance degradation. Given the limitations of TCP, the AeroTP opportunistic transport protocol with multiple reliability modes has been developed to specifically address the issues posed by telemetry networks. In our previous work, the different modes of AeroTP have been simulated and tested using the open source ns-3 network simulator. In this paper, we use ns-3 to evaluate the overall performance of AeroTP by comparing it with well-studied TCP variants: the widely-deployed TCP NewReno and TCP Westwood designed for wireless environments. Since space networks share many similar characteristics with telemetry environments, we also compare AeroTP with SCPS-TP.
    • Performance of Turbo Coded OFDM Modulation over an Aeronautical Channel

      Cole-Rhodes, Arlene; Dean, Richard; Moazzami, Farzad; Assegu, Wannaw; Fofanah, Ibrahim; Morgan State University (International Foundation for Telemetering, 2012-10)
      The main objectives of Integrated Network Enhanced Telemetry (iNET) are increased data rate and improved spectral efficiency. In this paper we propose the transmission scheme for the physical layer to be coded Quadrature Amplitude Modulation-Orthogonal Frequency Division Multiplexing (QAM OFDM) which enables high data rates and spectrum efficiency. However in high mobility scenarios, the channel is time-varying the receiver design is more challenging. In this paper pilot-assisted channel estimation is used at the receiver, with turbo coding to enhance the performance; while the effect of inter symbol interference (ISI) is mitigated by cyclic prefix. The focus of this paper is to evaluate the performance of OFDM with QAM over an aeronautical channel. The M-QAM with OFDM provides a higher data rate than QPSK hence it is chosen in this paper. The implementation is done using Inverse Fast Fourier Transform (IFFT) and the Fast Fourier Transform (FFT). This paper considers how the performance of Coded QAM OFDM can be enhanced using equalization to compensate for inter symbol interference, and using turbo coding for error correction.
    • Positional Awareness Map 3D (PAM3D)

      Hoffman, Monica; Allen, Earl; Yount, John; Norcross, April; NASA Dryden Flight Research Center; Arcata Associates, Incorporated (International Foundation for Telemetering, 2012-10)
      The Western Aeronautical Test Range of the National Aeronautics and Space Administration's Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
    • The Process of Implementing a RF Front-End Transceiver for NASA's Space Network

      Thompson, Willie L., II; Wilder, Ali; Pannu, Randeep; Haj-Omar, Amr; Morgan State University (International Foundation for Telemetering, 2012-10)
      Software defined radio (SDR) introduces endless possibilities for future communication technologies. Instead of being limited to a static segment of the radio spectrum, SDR allows RF front-ends to be more flexible by using digital signal processing (DSP) and cognitive techniques to integrate adaptive hardware with dynamic software. We present the design and implementation of an innovative RF front-end transceiver architecture for application into a SDR test-bed platform. System-level requirements were extracted from the Space Network User Guide (SNUG). Initial system characterization demonstrated image leakage due to poor filtering and mixer isolation issues. Hence, the RF front-end design was re-implemented using the Weaver architecture for improved image rejection performance.