• The Range Area Network: A New Approach for Aeronautical Telemetry

      Rice, Michael; Tinubi, Oluwasegun; Brigham Young University (International Foundation for Telemetering, 2010-10)
      The concept of a range area network dedicated to the reception of telemetry from airborne test articles is explored. The range area network consists of ground-based radios that receive telemetry packets from an airborne test article and relay those packets through the network to a data sink (e.g., the main telemetry display and processing center). The network may use either "dumb" nodes or "smart" nodes and this choice presents a trade-off involving node complexity, network bandwidth, and required RF power. Using a somewhat idealized, but nonetheless realistic example at the Edwards AFB complex and link budgets based on the emerging iNET standard, we show that a network consisting of just 6 nodes reduces the L-band airborne transmitter power to 6W and the ground-based transmitters to 3W. If the airborne transmitter is restricted to 1W at L-band, then coverage can be provided by a grid of 50 nodes.
    • Range-Video Network (RNET)

      Berard, Alfredo; Buckley, Mark; Roach, John; Eglin Air Force Base; Teletronics Technology Corporation (International Foundation for Telemetering, 2010-10)
      The deployment of network-based airborne instrumentation systems is leading to cost-efficient replacement of legacy instrumentation systems. One application of airborne data acquisition that has been developed and maintained separately from traditional avionics and orange-wire data acquisition systems is high-speed camera packages. The development of network-based instrumentation systems has led to an opportunity to unify these two previously distinct airborne data acquisition activities. This paper describes the range-video network-based instrumentation system (rNET) being implemented by the 46th Test Wing, 846th Test Support Squadron at Eglin Air Force Base, FL to replace the existing Airborne Separation Video System (ASVS).
    • Recording in the iNET Architecture: Moving to the Future of Recording

      Cranley, Nikki; Corry, Diarmuid; ACRA Control (International Foundation for Telemetering, 2010-10)
      At the heart of many networked Flight Test Instrumentation (FTI) systems is the Network- Recorder. The high data rates typical in networked FTI systems put increased demands on the Network-Recorder to support ever faster read and write rates. However, thanks to the developments in CompactFlash and SATA technologies, such recording rates are achievable in the Network-Recorder. This paper discusses several ways in which the recorder can be optimized to improve the memory capacity usage, writing speed and relevance of the recorded data.
    • Reduced Complexity Viterbi Decoders for SOQPSK Signals over Multipath Channels

      Saquib, Mohammad; Kannappa, Sandeep Mavuduru; University of Texas at Dallas (International Foundation for Telemetering, 2010-10)
      High data rate communication between airborne vehicles and ground stations over the bandwidth constrained Aeronautical Telemetry channel is attributed to the development of bandwidth efficient Advanced Range Telemetry (ARTM) waveforms. This communication takes place over a multipath channel consisting of two components - a line of sight and one or more ground reflected paths which result in frequency selective fading. We concentrate on the ARTM SOQPSKTG transmit waveform suite and decode information bits using the reduced complexity Viterbi algorithm. Two different methodologies are proposed to implement reduced complexity Viterbi decoders in multipath channels. The first method jointly equalizes the channel and decodes the information bits using the reduced complexity Viterbi algorithm while the second method utilizes the minimum mean square error equalizer prior to applying the Viterbi decoder. An extensive numerical study is performed in comparing the performance of the above methodologies. We also demonstrate the performance gain offered by our reduced complexity Viterbi decoders over the existing linear receiver. In the numerical study, both perfect and estimated channel state information are considered.
    • A Reflection Type Phase Shifter for iNET Phase Array Antenna Applications

      Shrestha, Bikram; Morgan State University (International Foundation for Telemetering, 2010-10)
      In this article we present results from modeling and simulation of a L-band reflection type phase shifter (RTPS) that provides continuous phase shift of 0° to 360°. The RTPS circuit uses a 90º hybrid coupler and two reflective load networks consisting of varactor diodes and inductors. Proper design of 90° hybrid coupler is critical in realizing maximum phase shift. The RTPS circuit implemented on a Rogers Duroid substrate is large in size. We discuss methods to reduce the size of L-band RTPS.
    • Refraction Effects for Tracking Error at C- & S-Band Frequencies

      Oh, Chang Yul; Lee, Hyo Keun; Oh, Seung Hyeub; Korea Aerospace Research Institute; Chungnam National University (International Foundation for Telemetering, 2010-10)
      This document is focused on the examination of the tracking angular error due to the radio refraction for the target in low altitude of less than 5km and in low elevation angle. The real measured data using the GPS and the tracking systems of C- and S-band frequency in NARO Space centre, Korea are used for the analysis. The analysis shows couple of conclusions on the radio refraction effects; there are angular errors due to the radio refraction which is not to be neglected comparing the accuracy of the tracking system but to be considered for the precise measurement of the target position. Also, the refraction errors are dependent on the target altitude, but not on the frequency.
    • Remote Imaging System Acquisition (RISA) Space Environment Multispectral Imager

      Grubbs, Elmer; Marcellin, Michael; Lizarrage, Adrian; Lynn, Brittany; Lange, Jeremiah; University of Arizona (International Foundation for Telemetering, 2010-10)
      The purpose of the NASA Remote Imaging System Acquisition space camera prototype is to integrate multiple optical instruments into a small wireless system using radiation tolerant components. This stage of prototyping was the development of a broadband variable-focus camera that can transmit data wirelessly. A liquid lens in conjunction with a cerium doped double gauss eliminates traditional focusing mechanisms.
    • A Robotic Platform for Student System Design

      Kosbar, Kurt; Rodhouse, Kathryn; Ziegler, Steven; Huttsell, Ryan; Missouri University of Science and Technology (International Foundation for Telemetering, 2010-10)
      The goal of the project described in this paper, is to develop a platform for undergraduate engineering students to use in system analysis and design courses. We chose to develop an inexpensive robotic platform. The robot is intended to be autonomous, under the control of an on-board microcontroller. In the first revision of the hardware, a three wheeled design will be used, with the intention of being used indoors, on smooth surfaces. Students in their first year of college education will purchase the components, and assemble the robot. After analyzing the baseline design, they will be encouraged to incorporate new sensors and actuators in the subsequent laboratory courses.
    • Role of a Small Switch in a Network-Based Data Acquisition System

      Hildin, John; Teletronics Technology Corporation (International Foundation for Telemetering, 2010-10)
      Network switches are an integral part of most network-based data acquisition systems. Switches fall into the category of network infrastructure. They support the interconnection of nodes and the movement of data in the overall network. Unlike endpoints such as data acquisition units, recorders, and display modules, switches do not collect, store or process data. They are a necessary expense required to build the network. The goal of this paper is to show how a small integrated network switch can be used to maximize the value proposition of a given switch port in the network. This can be accomplished by maximizing the bandwidth utilization of individual network segments and minimizing the necessary wiring needed to connect all the network components.
    • Situational Wireless Awareness Network

      Marcellin, Michael W.; Xin, Hao; Scheidemantel, Austin; Alnasser, Ibrahim; Carpenter, Benjamin; Frost, Paul; Nettles, Shivhan; Morales, Chelsie; University of Arizona (International Foundation for Telemetering, 2010-10)
      The purpose of this paper is to explain the process to implementing a wireless sensor network in order to improve situational awareness in a dense urban environment. Utilizing a system of wireless nodes with Global Positioning System (GPS) and heart rate sensors, a system was created that was able to give both position and general health conditions. By linking the nodes in a mesh network line of sight barriers were overcome to allow for operation even in an environment full of obstruction.
    • SOQPSK Signals in Multiple Input Multiple Output (MIMO) Systems

      Kosbar, Kurt; Gupte, Abhishek; Missouri University of Science and Technology (International Foundation for Telemetering, 2010-10)
      This paper investigates the use of shaped offset quadrature phase shift keying (SOQPSK) signals in multiple-input multiple-output (MIMO) communication systems. The goal is to integrate commonly used receiver architectures for conventional single-input single-output (SISO) systems into a corresponding MIMO system. The benefits of improved spectral efficiency are juxtaposed against the increased receiver complexity. Bit error rate performances for the SISO and MIMO architectures in a multipath environment are compared and conclusions regarding trade-offs between signal to noise ratio (SNR) and spectral efficiency stated.
    • Switched for Networked FTI

      Cranley, Nikki; ACRA Control (International Foundation for Telemetering, 2010-10)
      Ethernet technology offers numerous benefits for networked Flight Test Instrumentation (FTI) systems such as increased data rates, flexibility, scalability and most importantly interoperability owing to the inherent interface, protocol and technological standardization. In a networked FTI system, the switch is a key component that allows data to be routed between Data Acquisition Units (DAU's), networked recorders, data processing and analysis stations. This paper provides an introduction to network switching concepts with a focus on its operation in a networked FTI system. The features of Commercial Off-The-Shelf (COTS) and FTI switches are compared demonstrating the benefits of FTI switches in terms of reliability, routing, throughput, latency, and start-up delays.
    • A TDMA-MAC Protocol for a Seismic Telemetry-Network with Energy Constraints

      Mayer, Gerhard; Höller, Peter; Höller, Yvonne; University of Salzburg (International Foundation for Telemetering, 2010-10)
      The requirements for a seismic telemetry-network are even more stringent than the well known problems of sensor networks. Existing medium access control (MAC) protocols suggest reducing energy consuming network activity by reducing costly transmissions and idle listening. Furthermore, it is required to set up communication patterns in different priority levels as well as ensuring fast handling of critical events. A protocol is proposed that operates with two parallel sets of time schedules in a time-division-multiple-access (TDMA) sense of periodic activity for listening and for transmitting. Synchronization packets sent from a central base station ensure optimal response times.
    • Telemetry Architectures for Future Earth Observation Missions: Over 1 Gbit/s in X-Band

      Guérin, A.; Lesthievent, G.; Issler, J.-L.; Centre National d’Etudes Spatiales (CNES) (International Foundation for Telemetering, 2010-10)
      High data rate payload telemetry of Earth Observation missions is classically done in the Earth Exploration Satellite (EES) X-band (8025-8400 MHz) with current max data rates about 600 Mbit/s. While higher frequency bands are often considered to offer higher data rates, this paper deals with on-board architectures that would allow data transmission at more than 1 Gbit/s in X-Band. It presents these new architectures based on spectrally efficient transmission systems and on simultaneous bipolarization transmission, their designs and their performances. Variable Coding and Modulation techniques are described. Interference between channels in cross-polarization is also evaluated.
    • Telemetry System for the Solar Miner VII

      Kosbar, Kurt; Guenther, Clinton; Mertens, Robert; Lewis, Adam; Missouri University of Science and Technology (International Foundation for Telemetering, 2010-10)
      This paper describes a telemetry system used in the Missouri S&T solar car, which competed in the American Solar Challenge. The system monitors parameters of a number of the on-board electronic and mechanical systems, and also the activities of the vehicle driver. This data is transmitted to a lead vehicle, where the support team analyzes the performance in real-time to optimize the vehicle's performance. In previous vehicles the data was displayed using a LabVIEW based user interface. In this work we will describe a custom software solution, which provides the team with additional flexibility to display and analyze the data.
    • The Test and Training Enabling Architecture (TENA) Enabling Technology for the Joint Mission Environment Test Capability (JMETC) in Live, Virtual, and Constructive (LVC) Environments

      Hudgins, Gene; Poch, Keith; Secondine, Juana; TENA Software Development Activity (SDA) (International Foundation for Telemetering, 2010-10)
      The Joint Mission Environment Test Capability (JMETC) is a distributed live, virtual, and constructive (LVC) testing capability developed to support the acquisition community and to demonstrate Net-Ready Key Performance Parameters (KPP) requirements in a customer-specific Joint Mission Environment (JME). JMETC, using the Test and Training Enabling Architecture (TENA), provides connectivity to the Services' distributed test capabilities and simulations, and Industry test resources. TENA is well-designed for supporting JMETC events through its architecture and software capabilities which enable interoperability among range instrumentation systems, facilities, and simulations. TENA, used in major exercises and distributed test events, is also interfacing with other emerging range systems.
    • Time Stamp Synchronization in Video Systems

      Yang, Hsueh-szu; Kupferschmidt, Benjamin; Teletronics Technology Corporation (International Foundation for Telemetering, 2010-10)
      Synchronized video is crucial for data acquisition and telecommunication applications. For real-time applications, out-of-sync video may cause jitter, choppiness and latency. For data analysis, it is important to synchronize multiple video channels and data that are acquired from PCM, MIL-STD-1553 and other sources. Nowadays, video codecs can be easily obtained to play most types of video. However, a great deal of effort is still required to develop the synchronization methods that are used in a data acquisition system. This paper will describe several methods that TTC has adopted in our system to improve the synchronization of multiple data sources.
    • Using Generic Telemetry Prognostic Algorithms for Launch Vehicle and Spacecraft Independent Failure Analysis Service

      Losik, Len; Failure Analysis (International Foundation for Telemetering, 2010-10)
      Current failure analysis practices use diagnostic technology developed over the past 100 years of designing and manufacturing electrical and mechanical equipment to identify root cause of equipment failure requiring expertise with the equipment under analysis. If the equipment that failed had telemetry embedded, prognostic algorithms can be used to identify the deterministic behavior in completely normal appearing data from fully functional equipment used for identifying which equipment will fail within 1 year of use, can also identify when the presence of deterministic behavior was initiated for any equipment failure.
    • Using Oracol® for Predicting Long-Term Telemetry Behavior for Earth and Lunar Orbiting and Interplanetary Spacecraft

      Losik, Len; Failure Analysis (International Foundation for Telemetering, 2010-10)
      Providing normal telemetry behavior predictions prior to and post launch will help to stop surprise catastrophic satellite and spacecraft equipment failures. In-orbit spacecraft fail from surprise equipment failures that can result from not having normal telemetry behavior available for comparison with actual behavior catching satellite engineers by surprise. Some surprise equipment failures lead to the total loss of the satellite or spacecraft. Some recovery actions from a surprise equipment failure increase spacecraft risk and involve decisions requiring a level of experience far beyond the responsible engineers.
    • Using Telemetry to Measure Equipment Reliability and Upgrading the Satellite and Launch Vehicle Factory ATP

      Losik, Len; Failure Analysis (International Foundation for Telemetering, 2010-10)
      Satellite and launch vehicles continues to suffer from catastrophic infant mortality failures. NASA now requires satellite suppliers to provide on-orbit satellite delivery and a free satellite and launch vehicle in the event of a catastrophic infant mortality failure. The infant mortality failure rate remains high demonstrating that the factory acceptance test program alone is inadequate for producing 100% reliability space vehicle equipment. This inadequacy is caused from personnel only measuring equipment performance during ATP and performance is unrelated to reliability. Prognostic technology uses pro-active diagnostics, active reasoning and proprietary algorithms that illustrate deterministic data for prognosticians to identify piece-parts, components and assemblies that will fail within the first year of use allowing this equipment to be repaired or replaced while still on the ground. Prognostic technology prevents equipment failures and so is pro-active. Adding prognostic technology will identify all unreliable equipment prior to shipment to the launch pad producing 100% reliable equipment and will eliminate launch failures, launch pad delays, on-orbit infant mortalities, surprise in-orbit failures. Moving to the 100% reliable equipment extends on-orbit equipment usable life.