• Connecting Network-Based Data Acquisition Nodes to the Network

      Hildin, John; Teletronics Technology Corporation (International Foundation for Telemetering, 2008-10)
      Unlike communications protocols that are bus-based or multi-drop (e.g., CAIS Bus, Fibre Channel, RS-485), Ethernet relies on a point-to-point connection topology. One reason for this approach is to allow network nodes to negotiate their individual mode of communication with the network, i.e., link speed and duplexity. The goals of this paper are twofold. The first goal is to describe the process of link negotiation between nodes. This will include some of the details of how two physical layer devices establish communication. The second goal is to show how networked data acquisition nodes are physically connected within the overall system.
    • IP-Based Networking as Part of the Design of a Payload Control System

      Horan, Stephen; Aaronscooke, Ryan; Jaramillo, Daniel; New Mexico State University (International Foundation for Telemetering, 2008-10)
      As part of a project to develop small satellites, we have developed a combined ground station and flight computer that use IP-based networking for the command and telemetry data communications. The network uses a private IP network between the payload and the ground-station. Commands are sent to the payload as UDP short message packets. Status and real-time telemetry are sent as UDP text strings. Production data are sent as files using a ftp-type of data exchange. Production data types include numeric data (sensor data) and JPEG-formatted picture data (full pictures and thumbnails). Details of the software used, challenges of making the system work over a low-quality radio link, and integration with the operating system will be discussed.
    • Managing Instrumentation Networks

      Pesciotta, Eric; Teletronics Technology Corporation (International Foundation for Telemetering, 2008-10)
      As traditional data acquisition systems give way to network-based data acquisition systems a new approach to instrumentation configuration, management and analysis is required. Today, most flight test programs are supported by traditional instrumentation systems and software. Pockets of network-based systems exist but are typically entirely new, closed systems. Relatively soon, test articles will emerge with a mixture of equipment. The merger of traditional and networked instrumentation is inevitable. Bridging the gap in software tools is a non-trivial task. Network-based data acquisition systems provide expanded flexibility and capabilities well beyond traditional systems. Yet pre-existing equipment requires traditional configuration and analysis tools. Traditional flight test software alone cannot fully exploit the added benefits gained from such mergers. The need exists for a new type of flight test software that handles existing instrumentation while also providing additional features to manage a network of devices. Network management is new to flight test software but a thoughtful implementation can facilitate easy transition to these modern systems. This paper explores the technologies required to satisfy traditional system configuration as well as the less understood aspects of network management and analysis. Examples of software that meet or exceed these requirements are provided.
    • Migrating Airborne Instrumentation Systems from PCM to Network

      Berdugo, Albert; Teletronics Technology Corporation (International Foundation for Telemetering, 2008-10)
      The majority of currently operating flight test programs around the world utilize PCM-based airborne instrumentation systems. Most instrumentation engineers are very comfortable with PCM-based data acquisition systems, and feel uncomfortable when talking about network implementations and the adoption of iNET. In order for these engineers to embrace this new technology, migrating from a PCM to network topology must be done in an evolutionary manner that provides for the preservation of capital investment while introducing new system concepts that enhance current instrumentation systems. This paper describes hardware components that enable instrumentation engineers to migrate their existing PCM-based instrumentation system to a network-based system. Several of these components are discussed to illustrate how they provide a controlled migration path to a network-based system. These components include time distribution, gateways, network data selectors, network switches, transmitters, transceivers, and recorders.
    • Networked Data Acquisition Systems for the Army FCS Program

      Pesciotta, Eric; Roach, John; Sadia, Nathan; Yang, Hsueh-szu; Teletronics Technology Corporation (International Foundation for Telemetering, 2008-10)
      Teletronics Technology Corp. has been involved in the research and development of networked data acquisition systems for use in airborne instrumentation for several years. Recently, TTC successfully applied the advanced technology that was developed during these airborne efforts to a terrestrial application involving Army ground vehicles. The Future Combat Systems Program (FCS) for the U.S. Army recently solicited a networked-based solution to the problem of acquiring real-time data specific to the training of soldiers operating visual targeting systems within Bradley Armored Vehicles and Abrams Battle Tanks. This paper describes the High-Speed Digital Recording system, a network-based data acquisition system designed to allow for the recording of high-resolution (up to 1600x1280) RGB video, user-selected Ethernet packets, along with audio and GPS time information.
    • Wireless Sensor System for Airborne Applications

      Pellarin, Steve; Grossman, Hy; Musteric, Steven; Teletronics Technology Corporation; Eglin Air Force Base (International Foundation for Telemetering, 2008-10)
      Adding an instrumentation / telemetry system to a test article has historically required an intrusive installation. Power, wiring, and available space typically present significant challenges. There has been a long-standing need in the test and training community for a non-intrusive, flexible and modular instrumentation and telemetry system that can be installed on an aircraft or other test article without the need for permanent modifications. In addition, as available space in aircraft weapon bays, small weapons, and unmanned vehicles becomes a premium, the miniaturization of remote sensors and telemetry units becomes critical. This paper describes the current status of the Advanced Subminiature Telemetry System (ASMT) Initial Test Capability Project. It discusses the progress to date in fielding an operational, wireless sensor system that may be installed on the aircraft skin using an Electro-Cleavable adhesive as an alternative to conventional mounting methods. The wireless sensor utilizes the Wireless Communications Standard for Wireless Personal Area Network™ (WPAN™) IEEE 802.15 Working Group standard (commonly referred to as Bluetooth) to establish communication between the sensor and controller modules. Results of aircraft ground testing for EMI compatibility with aircraft systems will be presented. It is also expected that actual flight test results will be available by the time the paper goes to publication.