Flyash, Boris; Platovskiy, Steve; Army Research Development and Engineering Center (International Foundation for Telemetering, 2007-10)
      The High-G Telemetry System for Tank Munitions was designed for and used on the Tank Projectile Course Correction Project, which is a program to design, develop, manufacture, assemble and deliver a course correction system, for a 120mm projectile by increasing the probability of hit against stationary and moving targets. The Precision Munitions Instrumentation Division (PMID) of U.S. Army TACOM-ARDEC has been providing high “G” telemetry services for over 50 years. Some of the capabilities of the group involve design, development, fabrication, testing, and data acquisition and analysis. The Precision Munitions Instrumentation Division is supporting this program by designing and manufacturing a telemetry system for monitoring on-board divert mechanism operation and sensors during the gun launch and in-flight. The telemetry system that was designed for this effort was a six channel voltage controlled oscillator (VCO) FM/FM (frequency modulation) telemetry system. It was designed as a modular system that included a battery module, a multiplexer module, and a transmitter module. The system interfaced with a contractor’s electronics modules through a set of 15-pin MDM connectors. The telemetry package was integrated into a 120mm tank round and fired at approximately 50Kg’s. The telemeters were 100% successful in surviving the gun launch and collecting live flight data. Data transmitted by the telemeter included on-board sensor suite data, processor data, power levels, and others. The maximum frequency response of the system is 50 KHz, in order to transmit the processor’s digital data.

      Guevara, Mauricio; Flyash, Boris; Army Research Development and Engineering Center (International Foundation for Telemetering, 2007-10)
      The US ARMY, ARDEC; in cooperation with AMCOM AMRDEC, Missile Guidance and Engineering Directorates; the Office of Naval Research; Naval Surface Fire Support; and the Naval Surface Weapon Center, requires multiphase development of a common, low-cost, high G survivable, high accuracy, Micro Electro-Mechanical Systems (MEMS) Inertial Measurement Unit (IMU) and Common, Deeply Integrated, Guidance and Navigation Unit (DI-GNU) for DoD gun launched guided munition and missile applications. The challenge for the Precision Munition Instrumentation Division (PMID) was to develop a Telemetry System to record the interior and exterior ballistics of a M831 TP-T projectile, which will be used as a carrier for soft recovery testing of IMUs and GNUs. This valuable data that would help The Government and contractors develop and validate multiple MEMS IMU design efforts, culminating with live fire verification performance test of pre-production in the Army’s 155-mm Soft Recovery Vehicle (SRVs) and missiles airframes.