Bozarth, Don; Horcher, Greg; L-3 Communications (International Foundation for Telemetering, 2007-10)
      With recent developments in telemetry transmitter technologies, significantly greater DC to RF power efficiencies can be achieved. These new high efficiency transmitter designs may impact overall system design trade-offs by reducing the system size and weight requirements for batteries, heat sinks, and cabling. Furthermore, these fully DC isolated, next generation ARTM Tier 0, I and II enabled devices offer unique options to the platform designer in EMI/EMC control and system design. Advanced manufacturing techniques coupled with adaptive microprocessor control promises enhanced functionality, improved performance and reduced unit costs. The paper presents the performance of a new, high efficiency, telemetry transmitter topology and the possible system benefits involved with the application of this advanced transmitter technology within modern and legacy telemetry platforms. Specific sub-assembly circuit design techniques will be discussed and compared with prior design approaches.

      Ross, Robert W.; K/Bidy, Gilles; L-3 Communications (International Foundation for Telemetering, 2007-10)
      A test range facility may consist of a heterogeneous array of computer and workstation assets, given the need to support various new and legacy projects. The data display and analysis software for this heterogeneous environment can be equally diverse, with different application software available and/or supported on the workstations. The demands of managing an operator team skilled in the use of the various software applications, along with the support and maintenance costs, can be restrictive to a cost-effective and productive operation environment. The need for data display and analysis software that can run on all platforms in a heterogeneous environment plays a major role in creating an effective workforce capable of supporting multiple projects without the need to specialize on specific data display software. Likewise, the costs of maintenance and support are greatly reduced. A pure Java™ data display and analysis software product can meet the requirements of this need.

      Lee, Jeffrey C.; Steppler, Missy; L-3 Communications (International Foundation for Telemetering, 2007-10)
      Modern telemetry systems using state of the art field programmable gate arrays (FPGAs) and signal processing components require lower voltage supplies to support various CMOS core geometries while still needing multiple higher voltage rails to support legacy interfaces. Addressing these power supply requirements efficiently requires switching power supply topologies that if left unchecked can generate high input surge currents and high levels of detrimental noise for both the sensitive analog signal processing circuitry and the power supply input source. This paper focuses on the design considerations and tradeoffs associated with implementing an efficient telemetry encoder power supply while mitigating the resulting noise effects typically associated with switching power supplies. This noise can negatively affect the power supply input source and the linear signal processing circuitry within the telemetry encoder.

      Adamski, Greg; L-3 Communications (International Foundation for Telemetering, 2007-10)
      Telemetry missions spanning multiple years of tests often require access to archived configuration data for replay and analysis purposes. The needs for versioning vary from simple file-naming conventions to advanced global database versioning based on the scale and complexity of the mission. This paper focuses on a flexible approach to allow access to current and past versions of multiple test article configurations. Specifically, this paper discusses the characteristics of a versioning system for user-friendly and feature-rich solutions. It analyzes the tradeoffs of various versioning options to meet the needs of a given mission and provides a simple framework for users to identify their versioning requirements and implementation.

      K/Bidy, Gilles; L-3 Communications (International Foundation for Telemetering, 2007-10)
      As part of the technology upgrades driven by the iNet initiative, there is a need to establish a meta-data standard to describe configuration information for the system under test. The technology identified for such a standard is XML and XSD schemas. This paper presents findings from various experiments to import and export existing telemetry configuration information to XML based on the new Meta-data model. In addition, this paper will discuss the possible conversions to and from the existing IRIG TMATS standard.