• SOFT RECOVERY RECORDING SYSTEM FOR INTERIOR AND EXTERIOR BALLISTICS CHARACTERIZATION

      Guevara, Mauricio; Flyash, Boris; Army Research Development and Engineering Center (International Foundation for Telemetering, 2007-10)
      The US ARMY, ARDEC; in cooperation with AMCOM AMRDEC, Missile Guidance and Engineering Directorates; the Office of Naval Research; Naval Surface Fire Support; and the Naval Surface Weapon Center, requires multiphase development of a common, low-cost, high G survivable, high accuracy, Micro Electro-Mechanical Systems (MEMS) Inertial Measurement Unit (IMU) and Common, Deeply Integrated, Guidance and Navigation Unit (DI-GNU) for DoD gun launched guided munition and missile applications. The challenge for the Precision Munition Instrumentation Division (PMID) was to develop a Telemetry System to record the interior and exterior ballistics of a M831 TP-T projectile, which will be used as a carrier for soft recovery testing of IMUs and GNUs. This valuable data that would help The Government and contractors develop and validate multiple MEMS IMU design efforts, culminating with live fire verification performance test of pre-production in the Army’s 155-mm Soft Recovery Vehicle (SRVs) and missiles airframes.
    • UNLEASHING THE POWER OF XML

      Corry, Diarmuid; ACRA CONTROL Inc (International Foundation for Telemetering, 2007-10)
      Over the last few years XML has been growing in importance as a language for describing the meta-data associated with a complete flight test. Three years ago ACRA CONTROL introduced XidML as an open, published XML standard describing flight test data acquisition from the air to the ground. Recently, XML has been adopted by the TMATS RCC committee and is currently being studied by iNET. While many papers have focused on what XML is and why it is a powerful language, few have related this to practical benefits for the end user. This paper attempts to address this gap. The paper describes simple cost effective tools for generating XML through an intuitive GUI, validating XML information against a schema and transforming XML into useful reports. In particular a suite of value added tools for XidML is described.
    • DIFFERENTIAL ENCODING REVEALED: AN EXPLANATION OF THE TIER-1 DIFFERENTIAL ENCODING IN IRIG 106

      Rice, Michael; Brigham Young University (International Foundation for Telemetering, 2007-10)
      IRIG 106-04 specifies differential encoding for use with the interoperable Tier-1 modulations to deal with phase and delay-axis ambiguities associated with PLL-based carrier phase synchronization. The origins of the differential encoding have been shrouded in the mists of an unavailable technical report and a mysterious connection to previous published work in the open literature. This paper removes the mystery by showing that the differential encoding rule results from encoding bit-by-bit transitions in the phase trajectory of an offset QPSK modulated carrier.
    • MEASUREMENT-CENTRIC DATA MODEL FOR INSTRUMENTATION CONFIGURATION

      Malatesta, William; Fink, Clay; Naval Air Systems Command; Johns Hopkins University (International Foundation for Telemetering, 2007-10)
      CTEIP has launched the integrated Network Enhanced Telemetry (iNET) project to foster advances in networking and telemetry technology to meet emerging needs of major test programs. In the past these programs have been constrained by vendor proprietary equipment configuration utilities that force a significant learning curve on the part of instrumentation personnel to understand hardware idiosyncrasies and require significant human interaction and manipulation of data to be exchanged between different components of the end-to-end test system. This paper describes an ongoing effort to develop a measurement-centric data model of airborne data acquisition systems. The motivation for developing such a model is to facilitate hardware and software interoperability and to alleviate the need for vendor-specific knowledge on the part of the instrumentation engineer. This goal is driven by requirements derived from scenarios collected by the iNET program. This approach also holds the promise of decreased human interaction with and manipulation of data to be exchanged between system components.
    • HIGH-G TELEMETRY SYSTEM FOR TANK MUNITIONS

      Flyash, Boris; Platovskiy, Steve; Army Research Development and Engineering Center (International Foundation for Telemetering, 2007-10)
      The High-G Telemetry System for Tank Munitions was designed for and used on the Tank Projectile Course Correction Project, which is a program to design, develop, manufacture, assemble and deliver a course correction system, for a 120mm projectile by increasing the probability of hit against stationary and moving targets. The Precision Munitions Instrumentation Division (PMID) of U.S. Army TACOM-ARDEC has been providing high “G” telemetry services for over 50 years. Some of the capabilities of the group involve design, development, fabrication, testing, and data acquisition and analysis. The Precision Munitions Instrumentation Division is supporting this program by designing and manufacturing a telemetry system for monitoring on-board divert mechanism operation and sensors during the gun launch and in-flight. The telemetry system that was designed for this effort was a six channel voltage controlled oscillator (VCO) FM/FM (frequency modulation) telemetry system. It was designed as a modular system that included a battery module, a multiplexer module, and a transmitter module. The system interfaced with a contractor’s electronics modules through a set of 15-pin MDM connectors. The telemetry package was integrated into a 120mm tank round and fired at approximately 50Kg’s. The telemeters were 100% successful in surviving the gun launch and collecting live flight data. Data transmitted by the telemeter included on-board sensor suite data, processor data, power levels, and others. The maximum frequency response of the system is 50 KHz, in order to transmit the processor’s digital data.
    • TURBO-CODED APSK FOR TELEMETRY

      Shaw, Christopher; Rice, Michael; Brigham Young University (International Foundation for Telemetering, 2007-10)
      This paper considers the use of Amplitude-Phase Shift Keying (APSK) for a telemetry system. Variable rate turbo codes are used to improve the power efficiency of 16- and 32-APSK. We discuss compensation techniques for power amplifier nonlinearities. Simulation results show the improved spectral efficiency of this modulation scheme over those currently defined in telemetry standards.
    • A FREQUENCY SCAN/FOLLOWING SCAN TWOWAY CARRIER ACQUISITION METHOD FOR USB SYSTEM

      Jiaxing, Liu; Hongjun, Yang; Southwest China Institute of Electronic Technology (International Foundation for Telemetering, 2007-10)
      This paper introduces a frequency scan/following scan twoway carrier acquisition method for USB and its following scan slope decision algorithm. Some measures are used to improve twoway acquisition speed such as selecting initiation direction and returning to zero in the shortest path, which can be implemented by software. Theoretic analysis, mathematical expression, design method and experiment results are provided. Practical engineering application shows the twoway acquisition using this new method has many advantages such as fast speed, low cost and programmability. The method has been used in Chinese USB system widely.
    • USING COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENTS (CRADA) TO REDUCE THE TRANSITION TO PRODUCTION RISK OF A MISSILE TELEMETRY SECTION

      Kujiraoka, Scott R.; Fielder, Russell G.; NAVAIR (International Foundation for Telemetering, 2007-10)
      The Joint Advanced Missile Instrumentation (JAMI) Program’s main thrust has been the integration of Global Positioning System (GPS) tracking technology into the Department of Defense (DoD) Missile Test Ranges. This technology could be used for Time, Space, Position, and Information (TSPI), Flight Termination (FTS), or End Game Scoring purposes. However the Program’s main goal is to develop Proof-of-Concept components only. Transitioning Missile technology developed by the Government to Private Industry, so that it can be economically mass produced, has been quite a challenge. Traditionally, private industry has had to bid on proposals without much detailed information on how these components have been designed and fabricated. These unknown risks, Non-Recurring Engineering (NRE) and Missile Flight Qualification costs, routinely have significantly increased the price of these procurement contracts. In order so that the Fleet can economically utilize these components in the field, Cooperative Research and Development Agreements (CRADA) between the Government and Private Industry have been used to successfully transition Government developed technology to mass production. They can eliminate the NRE and flight qualification costs to provide for an economical and low risk method of providing the Fleet with the latest advances in GPS Tracking Technology. This paper will discuss how this is currently being accomplished in the development of a conformal wraparound instrumentation antenna for a five-inch diameter Missile Telemetry (TM) Section.
    • A HIGH-ACCURACY AND LOW-COMPLEXITY CARRIER-OFFSET-FREQUENCY ESTIMATOR

      Rice, Michael; Palmer, Joseph; Brigham Young University (International Foundation for Telemetering, 2007-10)
      A single-tone frequency estimator for a non-uniformly sampled sinusoid is proposed. A nonuniformly sampled sinusoid may be generated from the received training sequences of a telemetry link. The frequency of the sinusoid matches the carrier-frequency-offset (CFO) of the received signal, and estimation of this quantity allows a receiver to compensate for the CFO. The performance bounds of this type of estimator have been investigated in the literature, though little work has been published on practical algorithms. The estimator proposed in this paper is a generalization of phase-increment estimators previously described in the literature. It exhibits a low computational complexity yet converges to theoretical bounds at high SNR. The paper argues that a periodic training sequence structure, combined with the new estimator, allows for a high-accuracy and lowcomplexity CFO compensator.
    • SERIALLY CONCATENATED HIGH RATE CONVOLUTIONAL CODES WITH CONTINUOUS PHASE MODULATION

      Perrins, Erik; Damodaran, Kanagaraj; University of Kansas (International Foundation for Telemetering, 2007-10)
      We propose serially concatenated convolutional codes with continuous phase modulation for aeronautical telemetry. Such a concatenated code has an outer encoder whose code words are permuted by an interleaver, and a modulation, which is viewed as a code and takes the interleaved words as its input and produces the modulated signal. Since bandwidth expansion is a concern when coding is introduced, we focus on high rate punctured codes of rates 2/3 through 9/10. These are obtained by puncturing the basic rate 1/2 convolutional codes with maximal free distance. At the receiver end we use a reduced complexity iterative decoding algorithm which is essentially a soft input soft output decoding algorithm. These simple highly powerful concatenated codes produce high coding gains with minimum bandwidth expansion.
    • ENHANCED FLIGHT TERMINATION SYSTEM FLIGHT DEMONSTRATION AND RESULTS

      Tow, David; Arce, Dennis; National Aeronautics and Space Administration; Bourne Technologies, Inc. (International Foundation for Telemetering, 2007-10)
      This paper discusses the methodology, requirements, tests, and implementation plan for the live demonstration of the Enhanced Flight Termination System (EFTS) using a missile program at two locations in Florida: Eglin Air Force Base (AFB) and Tyndall AFB. The demonstration included the integration of EFTS Flight Termination Receivers (FTRs) onto the missile and the integration of EFTS-program-developed transmitter assets with the mission control system at Eglin and Tyndall AFBs. The initial test stages included ground testing and captive-carry flights, followed by a launch in which EFTS was designated as the primary flight termination system for the launch.
    • HIGH-RATE WIRELESS AIRBORNE NETWORK DEMONSTRATION (HiWAND) FLIGHT TEST RESULTS

      Franz, Russell; National Aeronautics and Space Administration (International Foundation for Telemetering, 2007-10)
      An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This paper discusses system configuration and the flight test results.
    • ACHIEVING PORTABILITY FOR LEGACY SOFTWARE USING JAVA

      Cooper, D. Kelly; TYBRIN Corporation; Eglin Air Force Base (International Foundation for Telemetering, 2007-10)
      Increasingly, many software developers are facing the challenge of adapting software applications developed on one platform to work on multiple platforms. While software standards have helped this effort, they do not go far enough, and many platforms only partially support these standards leaving many needed functions in platform specific libraries. This is particularly evident in the areas of graphics and user interfaces, threading and synchronization, and in network and file access. Fortunately, Java offers a common interface where native libraries diverge. This paper outlines a phased strategy for migrating platform specific applications to be platform independent while reusing the robust, existing algorithms.
    • FIBRE CHANNEL BUS MONITORING WITH AIRBORNE DATA MULTIPLEXER / RECORDER SYSTEM

      Berdugo, Albert; Pesciotta, Eric; Teletronics Technology Corporation (International Foundation for Telemetering, 2007-10)
      Modern aircraft now employ widely accepted and standardized technology commonly found in COTS applications. One such technology, Fibre Channel, has been deployed to transport both low and high-speed measurement data. Data as varied as “command and control”, “Radar Sensors” and “video” are being transmitted over fibre channel on many aircrafts. Some of these applications require data monitoring in listening mode only where transmission from the instrumentation equipment is not allowed or possible. As a result, standard off the shelf Fibre Channel devices cannot be used, and a development of a general purpose Fibre Channel monitor/ analyzer device and product is required. This paper discusses the concept, merits, and implementation of fibre channel bus monitoring in modern data acquisition systems. Techniques for tapping into an optical fibre channel network, as well as, a recording format for IRIG106 Chapter 10 are included. An overview of fibre channel topologies and protocols is also provided.
    • DESIGN OF A CONFIGURATIONAND MANAGEMENT TOOL FORINSTRUMENTATION NETWORKS

      Roach, John; Teletronics Technology Corporation (International Foundation for Telemetering, 2007-10)
      The development of network-based data acquisition systems has resulted in a new architecture for supporting flight instrumentation that has the potential to revolutionize the way we test our aircraft. However, the inherent capability and flexibility in a networked test architecture can only be realized by the flight engineer if a sufficiently powerful toolset is available that can configure and manage the system. This paper introduces the concept of an instrumentation configuration and management system (ICMS) that acts as the central resource for configuring, controlling, and monitoring the instrumentation network. Typically, the ICMS supports a graphical user interface into the workings of the instrumentation network, providing the user with a friendly and efficient way to verify the operation of the system. Statistics being gathered at different peripherals within the network would be collected by this tool and formatted for interpretation by the user. Any error conditions or out-of-bounds situations would be detected by the ICMS and signaled to the user. Changes made to the operation of any of the peripherals in the network (if permitted) would be managed by the ICMS to ensure consistency of the system. Furthermore, the ICMS could guarantee that the appropriate procedures were being followed and that the operator had the required privileges needed to make any changes. This paper describes the high-level design of a modular and multi-platform ICMS and its use within the measurement-centric aircraft instrumentation network architecture under development by the Network Products Division at Teletronics.
    • IHAL-BASED INSTRUMENTATION CONFIGURATION MANAGEMENT TOOLS

      Hamilton, John; Fernandes, Ronald; Koola, Paul; Jones, Charles H.; Knowledge Based Systems, Inc; Edwards Air Force Base (International Foundation for Telemetering, 2007-10)
      The Instrumentation Hardware Abstraction Language (IHAL) has been developed to be a neutral language that is focused on the description and control of instrumentation systems and networks. This paper describes the various instrumentation configuration management tools we have designed that make use of IHAL’s neutral specification of instrumentation networks. We discuss the features currently present in prototypes as well as future enhancements.
    • ON REDUCED COMPLEXITY TECHNIQUES FOR BANDWIDTH EFFICIENT CONTINUOUS PHASE MODULATIONS IN SERIALLY CONCATENATED CODED SYSTEMS

      Perrins, Erik; Kumaraswamy, Dileep; University of Kansas (International Foundation for Telemetering, 2007-10)
      Serially concatenated coded (SCC) systems with continuous phase modulations (CPMs) as recursive inner codes have been known to give very high coding gains at low operative signal to noise ratios (SNRs). Moreover, concatenated coded systems with iterative decoding approach the bit error rate (BER) bounds given by the maximum likelihood (ML) criterion. Although SCC systems by themselves are reduced complexity systems when compared to the ML decoding, when very highly bandwidth efficient CPMs such as pulse code modulation /frequency modulation (PCM/FM) is used [1], they present a problem of extremely high decoding complexity at the receiver. The complexity of a CPM is described by the size of its trellis which is a function of the modulation index, the cardinality of the source alphabet and the length of the frequency pulse used. The surveyed complexity reduction techniques adopt approximations which will reduce the size of the trellis with minimal expense of power. In this paper, we present reduced complexity approaches to sub-optimally decode SCC PCM/FM by mainly two approaches - 1) Frequency pulse truncation. 2) Decision feedback.
    • DEVELOPMENT OF AN UNMANNED AIRBORNE TELEMETRY TRACKING AND RELAY SYSTEM

      Pho, Tam P.; Wysong, Henry D.; Aerocross Systems, Inc. (International Foundation for Telemetering, 2007-10)
      Aerocross Systems, Inc. is developing a low-cost unmanned airborne telemetry relay system to augment the USAF Air Armament Center’s Eglin Gulf Range instrumentation resources. The system is designed to remotely autotrack and relay S-Band telemetry and VHF/UHF voice communications from test articles beyond the line-of-sight of land-based instrumentation. The system consists of a medium altitude/endurance Unmanned Aerial Vehicle (UAV), a Mission Control Station, and a remotely operated telemetry/voice tracking and relay instrumentation suite. Successfully developed and deployed, the system will contribute to lower range costs while enhancing range instrumentation performance.
    • SYMBOL TIMING RECOVERY FOR SOQPSK

      Perrins, Erik; Chandran, Prashanth; University of Kansas (International Foundation for Telemetering, 2007-10)
      Shaped offset quadrature phase shift keying (SOQPSK) is a highly bandwidth efficient modulation technique used widely in military and aeronautical telemetry standards. It can be classified as a form of continuous phase modulation (CPM), but its major distinction from other CPM schemes is that it has a constrained (correlated) ternary data alphabet. CPM-based detection models for SOQPSK have been developed only recently. One roadblock standing in the way of these detectors being adopted is that existing symbol timing recovery techniques for CPM are not always applicable since the data symbols are correlated. We investigate the performance of one CPM-based timing error detector (TED) that can be used with SOQPSK, and apply it to the versions of SOQPSK used in military (MIL-STD SOQPSK) and telemetry group (SOQPSK-TG) standards. We derive the theoretical performance limits on the accuracy of timing recovery for SOQPSK, as given by the modified Cramer-Rao bound (MCRB), and show that the proposed TED performs close to these bounds in computer simulations and is free of false-lock points. We also show that the proposed scheme outperforms a non-data aided TED that was recently developed for SOQPSK. These results show that the proposed scheme has great promise in a wide range of applications due to its low complexity, strong performance, and lack of false-lock points.
    • Network Design Considerations in Telemetry Systems

      Grebe, Andy; Klein, Wayne; Apogee Labs, Inc. (International Foundation for Telemetering, 2007-10)
      In today’s world, computer networking has become common place both in industry as well as home, however all networks are not the same! The Telemetry world, like with many industries, has critical design considerations that need to be evaluated when you begin a new system or just adding on to a current infrastructure. This paper is intended to outline needed considerations when planning or implementing a network design in Telemetry Systems. These applications can range from sensor data transport through High Definition/High Speed Video applications.