Berdugo, Albert; Natale, Louis; Teletronics Technology Corporation; Lockheed Martin Aeronautics Co. (International Foundation for Telemetering, 2007-10)
      Sixteen years ago, RCC added Chapter 8 to the IRIG-106 standard for the acquisition of 100% MIL-STD-1553 data from up to eight buses for recording and/or transmission. In the past 5 years, the RCC recording committee added Chapter 10 to the IRIG-106 standard for acquisition of 100% data from PCM, MIL-STD-1553 busses, Video, ARINC-429, Ethernet, IEEE-1394, and others. IRIG-106 Chapter 10 recorder suppliers have further developed customer-specific interfaces to meet additional customer needs. These needs have included unique radar and avionic bus interfaces such as F-16 Fibre Channel, F-35 Fibre Channel, F-22 FOTR, and others. IRIG-106 Chapter 8 and Chapter 10 have provided major challenges to the user community when the acquired avionics bus data included data that must be filtered and never leave the test platform via TM or recording media. The preferred method of filtering data to ensure that it is never recorded or transmitted is to do so at the interface level with the avionic busses. This paper describes the data filtering used on the F-22 Program for the MIL-STD-1553 buses and the FOTR bus as part of the IRIG-106 Chapter 10 Multiplexer/Recorder System. This filtering method blocks selected data at the interface level prior to being transferred over the system bus to the media(s). Additionally, the paper describes the configuration method for defining the data to be blocked and the report generated in order to allow for a second party to verify proper programming of the system.

      Berdugo, Albert; Teletronics Technology Corporation (International Foundation for Telemetering, 2007-10)
      IRIG-106 Chapter 10 has become the recording standard for most of the new flight test programs and many of the current ongoing programs. The primary goal of the standard was to define a common format for recording 100% bulk data such as PCM, MIL-STD-1553 busses, Video/Audio, ARINC-429, Ethernet, IEEE-1394, Analog Data, and others. In most cases the standard has provided the instrumentation engineers and the data analysts with a recording solution that meets their needs. Many programs require transmission of safety of flight data from a subset of the data acquired by the recorder. This may include selected video/audio channels, selected avionics bus data, and others. This requirement presents a dilemma to the flight test engineer who must duplicate part of the system for telemetry. This paper discusses several applications in which the IRIG-106 Chapter 10 recorder can be used as a telemetry system. It will include the transmission of bulk MIL-STD-1553 data per IRIG-106 Chapter 8, transmission of multiple Video/Audio and PCM data channels, and transmission of selected avionics data per IRIG-106 Chapter 4.