• DEVELOPMENT OF A NETWORK-CENTRIC DATA ACQUISITION, RECORDING, AND TELEMETRY SYSTEM

      Moodie, Myron; Newton, Todd; Abbott, Ben; Southwest Research Institute (International Foundation for Telemetering, 2007-10)
      The growth of the Internet and the resulting increasing speeds and decreasing prices of network equipment have spurred much interest in applying networks to flight test applications. However, the best-effort, variable-latency nature of network transport causes challenges that must be addressed to provide reliable data acquisition and timing performance. This paper describes the major issues that must be addressed when designing and implementing real-time networking applications. An overview of a recently implemented large-scale, network-centric data acquisition, recording, and telemetry system for commercial flight test applications provides a real-world example of what is currently achievable.
    • MANAGEMENT OF NETWORK-BASED FLIGHT TEST SYSTEMS

      Moore, Michael S.; Grim, Evan T.; Kamat, Ganesh U.; Moodie, Myron L.; Southwest Research Institute (International Foundation for Telemetering, 2007-10)
      Network-based instrumentation systems are rapidly replacing traditional fixed serial interconnected instrumentation in both commercial and military flight test environments. Modern network-based flight test systems are composed of large numbers of devices including high-speed network switches, data acquisition devices, recorders, telemetry interfaces, and wireless network transceivers, all of which must be managed in a coordinated fashion. Management of the network system includes configuring, controlling, and monitoring the health and status of the various devices. Configuration by hand is not a realistic option, so algorithms for automatic management must be implemented to make these systems economical and practical. This paper describes the issues that must be addressed for managing network-based flight test systems and describes a network management approach that was developed and employed to manage a large-scale network-based flight test system.
    • Network Design Considerations in Telemetry Systems

      Grebe, Andy; Klein, Wayne; Apogee Labs, Inc. (International Foundation for Telemetering, 2007-10)
      In today’s world, computer networking has become common place both in industry as well as home, however all networks are not the same! The Telemetry world, like with many industries, has critical design considerations that need to be evaluated when you begin a new system or just adding on to a current infrastructure. This paper is intended to outline needed considerations when planning or implementing a network design in Telemetry Systems. These applications can range from sensor data transport through High Definition/High Speed Video applications.
    • RANGE COMMANDER’S COUNCIL (RCC) TELECOMMUNICATIONS AND TIMING GROUP (TTG) UPDATE ON TM OVER IP STANDARD DEVELOPMENT

      Eslinger, Brian; Kovach, Bob; TYBRIN Corporation; Superior Access Solutions (SAS) (International Foundation for Telemetering, 2007-10)
      The RCC TTG initiated task TT-49 to generate a standard for the transport of serial streaming telemetry (TM) over the Internet Protocol (IP). An ad hoc committee was activated comprised of Range and vendor participation to develop this standard. This paper will address the progress of the standard, the use of commercial standards, and the benefits to the ranges. The early meetings focused on developing the packet structure; the preliminary results will be presented along with the latest status on the RCC approval cycle.
    • TOWARDS FULLY AUTOMATED INSTRUMENTATION TEST SUPPORT

      Jones, Charles H.; Edwards Air Force Base (International Foundation for Telemetering, 2007-10)
      Imagine that a test vehicle has just arrived at your test facility and that it is fully instrumented with sensors and a data acquisition system (DAS). Imagine that a test engineer logs onto the vehicle’s DAS, submits a list of data requirements, and the DAS automatically configures itself to meet those data requirements. Imagine that the control room then contacts the DAS, downloads the configuration, and coordinates its own configuration with the vehicle’s setup. Imagine all of this done with no more human interaction than the original test engineer’s request. How close to this imaginary scenario is the instrumentation community? We’re not there yet, but through a variety of efforts, we are headed towards this fully automated scenario. This paper outlines the current status, current projects, and some missing pieces in the journey towards this end. This journey includes standards development in the Range Commander’s Council (RCC), smart sensor standards development through the Institute of Electrical and Electronics Engineers (IEEE), Small Business Innovation Research (SBIR) contracts, efforts by the integrated Network Enhanced Telemetry (iNET) project, and other projects involved in reaching this goal.