• CODED OFDM FOR AERONAUTICAL TELEMETRY

      Rice, Michael; Welling, Kenneth; Brigham Young University; Motorola ISSPD (International Foundation for Telemetering, 2000-10)
      Three Quadrature Phase Shift Keying (QPSK) mapped COFDM systems demonstrating a continuum of complexity levels are simulated over an evolving three ray model of the multipath fading channel with parameters interpolated from actual channel sounding experiments. The first COFDM system uses coherent QPSK and convolutional coding with interleaving in frequency, channel equalization and soft decision decoding; the second uses convolutional coding with interleaving in frequency, Differential Phase Shift Keying (DPSK) and soft decision decoding; the third system uses a quaternary BCH code with DPSK mapping and Error and Erasure Decoding (EED). All three systems are shown to be able to provide reliable data communication during frequency selective fade events. Simulations demonstrate QPSK mapped COFDM with reasonable complexity performs well in a multipath frequency selective fading environment under parameters typically encountered in aeronautical telemetry.