• Channel Based Sampling in a Network Based Data Acquisition System

      Sulewski, Joseph; Dehmelt, Chris; L-3 Communications Telemetry East (International Foundation for Telemetering, 2013-10)
      Over the last few years, PCM based data acquisition systems have become known as "Traditional PCM" systems. This terminology modification is a sign of the evolution of the next generation of telemetry/data acquisition systems based on network topologies. This has come about due to users clamoring for functionality that has not been available in the traditional systems, such as supporting increased data rates, providing access to onboard archived data, supporting on-the-fly reconfiguration, and simplifying data distribution and delivery. The iNET standard is using standard network technology to improve device interoperability and data acquisition. To minimize impact on existing data acquisition system devices, the initial effort of this approach has included the transmission of "Traditional" fixed PCM frames within a network message based structure. This approach, however, squanders network bandwidth, as a PCM frame includes all samples of all channels, and requires significant processing power for even simple tasks. Delivering on the promise of a more flexible transmission method requires a change in how data is acquired in the data acquisition devices. The iNET standard defines such a packet based transport system, which supports channel based packet formats besides "Traditional PCM" to efficiently deliver data products. This paper will provide background on the benefits of these methods and an overview of methods by which these formats can be implemented.
    • The Subminiature Flight Safety System (SFSS) Development Progress

      Lambeth, Stephen; Dehmelt, Chris; Eglin Air Force Base; L-3 Communications Telemetry East (International Foundation for Telemetering, 2013-10)
      SFSS is a universal, small, and low cost, functionally redundant flight termination system (FTS) that incorporates encoding, processing and TSPI capabilities, provides critical health/safety/welfare monitoring and allows for highly efficient telemetering of weapon application and FTS data. The SFSS is intended as a solution to provide weapon system developers, test agencies, and range safety officers the ability to track, monitor, and if necessary, terminate all types of weapon systems. The SFSS components are intended to significantly reduce the recurring costs and improve the quality of test support by minimizing physical intrusion into weapon systems, and potentially eliminating the need for warhead removal. In addition, a common hardware suite assists in reducing the overall system cost of acquisition, a key element in today's world of stressed budgets. The SFSS is designed to interface with newly developed weapon systems, while providing the capability to be integrated into existing weapon systems with nominal modifications to the platform. The SFSS development is a multi-disciplinary effort, whose participating organizations include industry suppliers, range and system safety representatives, and technical offices from all branches of the armed services, as well as the weapons vendors to ensure that applicable technical and regulatory requirements are met. The original requirements for the project were defined within the SFSS System Performance Specification (SPS), which has undergone a number of updates as the design effort has progressed from concept to assembly and debug of the prototype components. This paper will provide an overview of the overall program status, key features of the SFSS including features added during development, critical design challenges, and additional activities planned to enhance the functionality of the system.