• Analysis of a Systems Engineering Based Approach to the University Rover Challenge

      Kosbar, Kurt; Jetter, Joshua; Missouri University of Science and Technology (International Foundation for Telemetering, 2013-10)
      The University Rover Challenge is a competition to build a scaled down version of a next-generation Mars rover. This paper describes the comprehensive systems engineering based approached used by the Missouri S&T Mars Rover Design Team. This student run, interdisciplinary team of approximately 50 students followed a comprehensive systems-engineering based approach to the conceptualization, design, implementation, test and evaluation of the project. This has allowed students to leverage their discipline specific expertise, while simultaneously facilitating the cross-disciplinary communication which is essential to the successful completion of the project. The team's performance in the competition will provide metrics to analyze the efficacy of this organization and approach.
    • Design and Semi-Autonomous Control of a 6-Axis Robotic Arm Used in a Remote Sensing Application

      Kosbar, Kurt; Sullivan, John; Coffman, Amy; Roberds, Benjamin; Roberts, Jordan; Missouri University of Science and Technology (International Foundation for Telemetering, 2013-10)
      This paper describes the sensor and actuator package for a 6-axis articulated arm which is part of a robotic vehicle entered in the Mars Rover Challenge competition. The robot is intended to perform some of the same duties as a human, but be remotely controlled. It uses an articulated arm for many of these duties. Because of the large number of degrees of freedom, it would be tedious to control each joint individually. A system was developed to measure the state of each joint, transmit this information back to a base station, and semi-autonomously control the arm.
    • Design of an Autonomous Robot for Indoor Navigation

      Kosbar, Kurt; McConnell, Michael; Chionuma, Daniel; Wright, Jordan; Brandt, Jordan; Zhe, Liu; Missouri University of Science and Technology (International Foundation for Telemetering, 2013-10)
      This paper describes the design and implementation of an autonomous robot to navigate indoors to a specified target using an inexpensive commercial off the shelf USB camera and processor running an imbedded Linux system. The robot identifies waypoints to aid in navigation, which in our case consists of a series of quick response (QR) codes. Using a 1080p USB camera, the robot could successfully identify waypoints at a distance of over 4 meters, and navigate at a rate of 50 cm/sec.
    • Remote Monitoring of Residential Energy Usage

      Kosbar, Kurt; Tramel, Nathan; Dill, Jacob; Almuqallad, Hussam; Missouri University of Science and Technology (International Foundation for Telemetering, 2013-10)
      A substantial amount of the energy usage in developed countries is consumed by climate control of residential and commercial structures. Collecting information on the usage patterns of heating, ventilation and air conditioning (HVAC) systems can allow a consumer to better understand the cost and effectiveness of these systems, and allow landlords and others to monitor their use. This paper describes a system which can easily be retrofitted onto legacy HVAC systems to monitor their activity, and then transmit the information over a wireless radio network for archiving and analysis
    • Study on Routing Protocols for the Security of Wireless Sensor Networks

      Kosbar, Kurt; Kulkarni, Aditya; Missouri University of Science and Technology (International Foundation for Telemetering, 2013-10)
      This paper describes some of the security challenges faced by Wireless Sensor Networks (WSN). A classification and analysis of prominent attacks on the routing protocols of WSN is provided, along with a review of recent developments in the field to help mitigate the impact of these attacks.
    • Telemetry and Command Link for University Mars Rover Vehicle

      Kosbar, Kurt; Hobbs, Jed; Meye, Mellissa; Trapp, Brad; Ronimous, Stefan; Ayerra, Irati; Missouri University of Science and Technology (International Foundation for Telemetering, 2013-10)
      This paper describes a telemetry and command communication link used as part of a rover entered in the University Mars Rover competition. The link is capable of transmitting multiple real time video streams, along with other telemetry data from a rover to a base station approximately one kilometer away, under non-line-of-sight conditions. Low data rate commands are sent to the rover, to control its movement. To simulate conditions on Mars, the link cannot use existing cellular or satellite communication infrastructure. The data link uses the 70 cm Amateur Radio band for transmission in both directions.