• International Telemetering Conference Proceedings, Volume 49 (2013)

      International Foundation for Telemetering, 2013-10
    • Considerations for IP-Based Range Architectures

      Kovach, Bob; Superior Access Solutions, Inc. (International Foundation for Telemetering, 2013-10)
      In the past several years there has been a good amount of effort expended in migrating telemetry streams to IP-based infrastructure, especially in the area of ground-based transport. This has yielded a number of benefits, from leveraging the properties of IP transport to enable multicast transport, to the integration of the wide number of COTS equipment that also is IP-based, such as digital video encoder/decoders into range networks. This paper will provide a model for identifying areas to accelerate the integration of IP-based assets into the range infrastructure at the application level. In particular the integration of metadata between the telemetry and video application interfaces will be explored.
    • An LED Light Suit for Dancers

      Rice, Michael; McMurdie, Andrew; Brigham Young University (International Foundation for Telemetering, 2013-10)
      This paper describes the architecture, design, and performance of a dancing outfit equipped with LEDs and controlled by radio. The lights perform a "choreography" in synchronism with the music. The outfits were worn by a BYU dancing team (the "Cougarettes") for one of their dance routines.
    • Design and Semi-Autonomous Control of a 6-Axis Robotic Arm Used in a Remote Sensing Application

      Kosbar, Kurt; Sullivan, John; Coffman, Amy; Roberds, Benjamin; Roberts, Jordan; Missouri University of Science and Technology (International Foundation for Telemetering, 2013-10)
      This paper describes the sensor and actuator package for a 6-axis articulated arm which is part of a robotic vehicle entered in the Mars Rover Challenge competition. The robot is intended to perform some of the same duties as a human, but be remotely controlled. It uses an articulated arm for many of these duties. Because of the large number of degrees of freedom, it would be tedious to control each joint individually. A system was developed to measure the state of each joint, transmit this information back to a base station, and semi-autonomously control the arm.
    • Optical Orbital Angular Momentum for Secure and Power Efficient Point-to-Point FSO Communications

      Alfowzan, Mohammed; Khatami, Mehrdad; Vasic, Bane; University of Arizona (International Foundation for Telemetering, 2013-10)
      We address the problem of detection in orbital angular momentum (OAM). The focus of our analysis will be on the power efficient Q-ary Pulse Position Modulation (Q - PPM). Free space optical signals sent through wireless channels are degraded by atmospheric turbulence. In this paper a novel detection approach based on a factor graph representation of OAM Q-PPM signalling is presented to equalize for the crosstalk among orbital angular momentum vortices. It will be shown that our proposed detection algorithm significantly outperforms the separate detection scenario in terms of error rate performance.
    • Future of Flash

      Budd, Chris; SMART High Reliability Solutions, Inc. (International Foundation for Telemetering, 2013-10)
      Solid-State Drives (SSDs) are an enabling technology for data recorders. SSDs can survive where Hard-Disk Drives (HDDs) cannot. SSDs deliver better performance with lower power consumption than HDDs. However, the end of Single-Level Cell (SLC) NAND flash may be near; Multi-Level Cell (MLC) NAND flash soon may be the only choice for industrial applications. System designers have two distinct concerns before implementing SSDs: 1. Cost: MLC NAND flash makes SSDs as affordable as HDDs 2. Endurance: SSDs are reliable and endurance assured with today's controller technology SSDs are leading the charge in transforming data storage in several applications, telemetry included.
    • A Predictive Model for Multi-Band Optical Tracking System (MBOTS) Performance

      Horii, M. Michael; Photo-Sonics, Inc. (International Foundation for Telemetering, 2013-10)
      In the wake of sequestration, Test and Evaluation (T&E) groups across the U.S. are quickly learning to make do with less. For Department of Defense ranges and test facility bases in particular, the timing of sequestration could not be worse. Aging optical tracking systems are in dire need of replacement. What's more, the increasingly challenging missions of today require advanced technology, flexibility, and agility to support an ever-widening spectrum of scenarios, including short-range (0 − 5 km) imaging of launch events, long-range (50 km+) imaging of debris fields, directed energy testing, high-speed tracking, and look-down coverage of ground test scenarios, to name just a few. There is a pressing need for optical tracking systems that can be operated on a limited budget with minimal resources, staff, and maintenance, while simultaneously increasing throughput and data quality. Here we present a mathematical error model to predict system performance. We compare model predictions to site-acceptance test results collected from a pair of multi-band optical tracking systems (MBOTS) fielded at White Sands Missile Range. A radar serves as a point of reference to gauge system results. The calibration data and the triangulation solutions obtained during testing provide a characterization of system performance. The results suggest that the optical tracking system error model adequately predicts system performance, thereby supporting pre-mission analysis and conserving scarce resources for innovation and development of robust solutions. Along the way, we illustrate some methods of time-space-position information (TSPI) data analysis, define metrics for assessing system accuracy, and enumerate error sources impacting measurements. We conclude by describing technical challenges ahead and identifying a path forward.
    • Validation for Visually lossless Compression of Stereo Images

      Marcellin, Michael W.; Bilgin, Ali; Feng, Hsin-Chang; University of Arizona (International Foundation for Telemetering, 2013-10)
      This paper described the details of subjective validation for visually lossless compression of stereoscopic 3 dimensional (3D) images. The subjective testing method employed in this work is adapted from methods used previously for visually lossless compression of 2 dimensional (2D) images. Confidence intervals on the correct response rate obtained from the subjective validation of compressed stereo pairs provide reliable evidence to indicate that the compressed stereo pairs are visually lossless.
    • Telemetry and Command Link for University Mars Rover Vehicle

      Kosbar, Kurt; Hobbs, Jed; Meye, Mellissa; Trapp, Brad; Ronimous, Stefan; Ayerra, Irati; Missouri University of Science and Technology (International Foundation for Telemetering, 2013-10)
      This paper describes a telemetry and command communication link used as part of a rover entered in the University Mars Rover competition. The link is capable of transmitting multiple real time video streams, along with other telemetry data from a rover to a base station approximately one kilometer away, under non-line-of-sight conditions. Low data rate commands are sent to the rover, to control its movement. To simulate conditions on Mars, the link cannot use existing cellular or satellite communication infrastructure. The data link uses the 70 cm Amateur Radio band for transmission in both directions.
    • Adaptive Feature-Specific Spectral Imaging Classifier (AFSSI-C)

      Gehm, Michael; Dunlop, Matthew; Poon, Phillip; University of Arizona (International Foundation for Telemetering, 2013-10)
      The AFSSI-C is a spectral imager that generates spectral classification directly, in fewer measurements than are required by traditional systems that measure the spectral datacube (which is later interpreted to make material classification). By utilizing adaptive features to constantly update conditional probabilities for the different hypotheses, the AFSSI-C avoids the overhead of directly measuring every element in the spectral datacube. The system architecture, feature design methodology, simulation results, and preliminary experimental results are given.
    • Spread Spectrum Signal Detection from Compressive Measurements

      Marcellin, Michael W.; Goodman, Nathan A.; Bilgin, Ali; Lui, Feng; University of Arizona (International Foundation for Telemetering, 2013-10)
      Spread Spectrum (SS) techniques are methods used to deliberately spread the spectrum of transmitted signals in communication systems. The increased bandwidth makes detection of these signals challenging for non-cooperative receivers. In this paper, we investigate detection of Frequency Hopping Spread Spectrum (FHSS) signals from compressive measurements. The theoretical and simulated performances of the proposed methods are compared to those of the conventional methods.
    • Paradigms Optimization for a C-Band COFDM Telemetry with High Bit Efficiency

      Skrzypczak, Alexandre; Thomas, Alain; Duponchel, Guillaume; Zodiac Data Systems (International Foundation for Telemetering, 2013-10)
      Systems using single carrier modulations for flight test transmissions perfectly fit noisy and time selective channels. However, the densification of the airport environment now makes the aero channel also frequency selective due to multiple reflections on surrounding buildings, especially while taxiing and taking off. Obviously, this has a direct consequence on hardware resources and user data rates. In such a context, COFDM represents an appealing solution thanks to its inherent robustness to multipath fading channels. But a direct application of an off-the-shelf COFDM standard is not straightforward as these standards are designed for specific channels whose characteristics are quite different from the aero one. That is why we made an experiment at Toulouse-Blagnac airport to jointly sound the channel and qualify a COFDM waveform. This paper then describes the construction of the waveform and the results of the channel sounding. From this, different standard paradigms are compared.
    • TSPI Radar Methodologies for Improved Positional Performance/Accuracy of C-Band Auto-tracking Telemetry

      Sternke, Barry; Ray, Matthew; BAE Systems (International Foundation for Telemetering, 2013-10)
    • Remote Imaging System Acquisition (RISA) Space Environment Multispectral Imager

      Grubbs, Elmer; Pine, Gerald; Gustafson, Joshua; Kay, John; Pilar, Janelle; Rojas, Rafael; Sylvester, Lance; Trojahn, Rachel; NASA Johnson Space Center (International Foundation for Telemetering, 2013-10)
      The RISA imaging team is tasked to research, develop, implement, and test a multispectral imaging system capable of supporting multiple NASA exploration objectives. This year's NASA team is responsible for characterizing the newly implemented liquid lens, implementing a charging circuit complete with rechargeable batteries and a solar panel array, and redesigning the already developed wireless data transmission system. The charging circuit will be fully designed by our electrical engineering team using Gallium Arsenide solar panels provided by AZUR SPACE Solar Power. The implementation of this solar panel array will enable the final system to be completely independent of any power consumption from the spacecraft. The wireless data transmission system will be redesigned to utilize a compression technique as opposed to entire-image compression, as the previous system had implemented. This edit, in conjunction with an interfacing bypass through hardwiring of the image sensor to the Gumstix COM, will drastically increase the data transmission rate. These modifications will therefore increase the rate at which NASA can send and receive data and/or the communication of rate of the camera commands through the designed GUI. As a result of new mission objectives and requirements associated with new age space vehicles, little physical capacity is available, especially compared to past NASA Space Shuttles. Employing a multi-purpose imaging system alleviates the need of manifesting multiple individual imagers by incorporating the numerous desired functions into one system. The final version of the imager, which is expected to be completed in follow-up work, is intended to be flight ready and will be used in the crew cabin, on the exterior of NASA vehicles, and on Lunar and other planetary surfaces. For this year's imager, the preliminary design review was broken down into four sections: the battery, the solar panel, the charging circuit, and wireless hardware. In each of these sections, multiple designs were considered, but the charging circuit and wireless system were decided to be custom designed by the team.
    • Low-Complexity Iterative Reconstruction Algorithms in Compressed Sensing

      Vasić, Bane; Marcellin, Michael W.; Declercq, David; Danjean, Ludovic; University of Arizona (International Foundation for Telemetering, 2013-10)
      In this paper we focus on two low-complexity iterative reconstruction algorithms in compressed sensing. These algorithms, called the approximate message-passing algorithm and the interval-passing algorithm, are suitable to recover sparse signals from a small set of measurements. Depending on the type of measurement matrix (sparse or random) used to acquire the samples of the signal, one or the other reconstruction algorithm can be used. We present the reconstruction results of these two reconstruction algorithms in terms of proportion of correct reconstructions in the noise free case. We also report in this paper possible practical applications of compressed sensing where the choice of the measurement matrix and the reconstruction algorithm are often governed by the constraint of the considered application.
    • On-Board Wireless Data Acquisition System and Telemetry

      Jasthi, Umakanth; Gorle, Bhaskar; Shayi, Y. Padma; Mai, C. Kiran; Jawaharlal Nehru Technological University; Cranfield University; VNRVJIET (International Foundation for Telemetering, 2013-10)
      Most of today's aircraft used for the commercial transport of passengers or military aircraft still rely on simple technology such as cables, connectors and sensors to provide power, avionics data, control system, aircraft instrumentation etc. throughout the vehicle's life-cycle for flight monitoring and fault diagnosis. Despite a marked improvement in the quality and reliability of these components, they continue to be the main cause of failures due to corrosion, misuse, improper installation, etc, using-up endless man-hours to troubleshoot, repair and upgrade them. Wireless monitoring by telemetry of some of the critical systems has been in use for some time as a point to point data link designed to provide vital information, potentially improving the safety and efficiency of any flight. Aircraft manufacturers are now looking at the use of wireless networks to replace current data buses used for the transfer of data between avionics systems and their sensors as well as for the control of some of the surface actuators. Wireless networks used in this way could reduce the amount of cabling and its associated weight as well as simplify the re-routing of connections making upgradation less expensive and quicker, again a benefit to airlines. Despite many benefits there is a potentially serious security issue by means of an introduction of a backdoor into the system, meaning that before aircrafts become network-enabled, all the security issues must be identified in full and dealt with.
    • MIMO Capacity Gains for Test Range Telemetry

      Reed, David E.; Rainhard, Robert L.; Real Time Logic, Inc. (International Foundation for Telemetering, 2013-10)
      The combination of power limitations and platform dynamics often preclude the use of highly bandwidth efficient modulations for test range telemetry. Instead, constant envelope modulations like pulse coded modulation - frequency modulation (PCM-FM) and other continuous phase modulation (CPM) are typically used. A solution may be to employ multiple-input multipleoutput (MIMO) antenna techniques. MIMO processing may be used to separate the signals from multiple transmitters. If data is dynamically allocated to the transmitters with acceptable received signal-to-noise ratio (SNR), the telemetry throughput may be optimized. The performance depends on the geometry and propagation conditions between the antennas.
    • Pulse Position Modulation using BICM-ID for FSO Channels

      Borah, Deva K.; Kumar, Kuldeep; New Mexico State University (International Foundation for Telemetering, 2013-10)
      We investigate pulse position modulation (PPM) and multipulse PPM (MPPM) for free space op- tical channels using bit interleaved coded modulation with iterative decoding. Data bits are first encoded by using a non recursive convolutional code and the coded bits after an interleaver are modulated before transmission. Iterative decoding is performed at the receiver. Optimized mapping is designed for MPPM. A genetic algorithm is used to find the optimized mapping for MPPM. Our simulation results show that a significant improvement in the error performance can be achieved by using optimized mapping and iterative decoding at the receiver.
    • TENA Implementation at Pacific Missile Range Facility (PMRF) Paper

      Wigent, Mark; McKinley, Robert A.; SAIC; TRAX International (International Foundation for Telemetering, 2013-10)
      PMRF provides a volume of space, which may include any combination of below-surface, surface, above-surface environments to safely test, gather data, and monitor in real time, the performance of systems being developed. This paper discusses how TENA implementation in range instrumentation; including radar, optics, video, GPS, and telemetry systems; will enhance data acquisition and distribution of systems under test. While details of this implementation plan are specific to PMRF, this approach can serve as a blueprint for TENA implementation at other ranges throughout the DoD.
    • Variable Rate OFDM Performance on Aeronautical Channels

      Moazzami, Farzad; Cole-Rhodes, Arlene; Dean, Richard; Elrais, Mostafa; Mengiste, Betelhem; Guatam, Bibek; Damiba, Eugene; Morgan State University (International Foundation for Telemetering, 2013-10)
      This paper shows the design and testing of a test bed at Morgan State University as part of the development of a Link Dependent Adaptive Radio (LDAR). It shows the integration of variable rate QAM/OFDM modulation and a variable rate Punctured Convolutional Coder. It also shows a dynamic aeronautical channel simulator developed to capture the dynamics of these channels. Performance results are show for combinations of modulation, coding and channel variations that provide motivation for the potential of the LDAR system.