• Optimal Location for a Mobile Base Station in a Complex Network

      Moazzami, Farzad; Dean, Richard; Astatke, Yacob; Morgan State University (International Foundation for Telemetering, 2013-10)
      The focus of this work is the development of a complete network architecture to enhance telemetry performance using a mobile base station (MBS). The present study proposes a means of enabling both the mobile ad-hoc network (MANET) and a cellular network to operate simultaneously within the same spectrum. In this paper the application of a modified k-means clustering to organize several hundred TAs in a complex network environment is presented. A mobile base station is added to the network to locate the congested area and support the network but positioning itself in the mixed network environment. A scenario with two base stations (one mobile and one stationary) is simulated and results are presented. It is observed that use of an additional mobile base station could greatly increase the quality of communication by providing uniform distribution of node traffic and interference across the clusters in a complex telemetry environment with several hundred TAs.
    • Telemetry Network System (TMNS) Link Management Algorithm Verification

      O'Connell, Ray; RoboComAI LLC (International Foundation for Telemetering, 2013-10)
      Telemetry Network System (TmNS) contains a centralized link manager which allows efficient use of the frequency spectrum by dynamically allocating capacity to transmit based on need and priority. To verify the accurate operation of the telemetry system link management algorithm prior to system demonstration, a combination of novel techniques were leveraged in the areas of modeling and simulation, and test bed verification. This paper will cover the process of verifying the link management algorithm from the use of the OPNET iNET simulation to test bed radio simulators along with the developed test bed tools used to capture the results.