• Sensing with Terahertz Radiation: Applications and Challenges

      Suen, J. Y.; Singh, R. S.; Li, W.; Taylor, Z. D.; Culjat, M. O.; Tewari, P.; Grundfest, W. S.; Brown, E. R.; Lee, H.; University of California, Santa Barbara; et al. (International Foundation for Telemetering, 2009-10)
      The field of Terahertz (THz) radiation, electromagnetic energy, between 0.3 to 3 THz, has seen intense interest recently, because it combines some of the best properties of IR along with those of RF. For example, THz radiation can penetrate fabrics with less attenuation than IR, while its short wavelength maintains comparable imaging capabilities. We discuss major challenges in the field: designing systems and applications which fully exploit the unique properties of THz radiation. To illustrate, we present our reflective, radar-inspired THz imaging system and results, centered on biomedical burn imaging and skin hydration, and discuss challenges and ongoing research.
    • Terahertz Spectroscopy for Medical Instrumentation Development

      Li, W.; Singh, R. S.; Suen, J. Y.; Taylor, Z. D.; Culjat, M. O.; Grundfest, W. S.; Brown, E. R.; Lee, H.; University of California, Santa Barbara; University of California, Los Angeles (International Foundation for Telemetering, 2009-10)
      Recent development of sources and detectors in the THz regime (300 GHz to 3 THz) has enabled the precise measurement of material properties, including complex refractive indexes and loss tangents. Using our developed THz spectrometer, new data, in particular, of biological tissues has been used to develop potential THz medical imaging applications. In this paper, an overview of a 0.1-3 THz, with sub-GHz resolution spectroscopy system is presented that has been designed in particular to measure biological samples and provide data that will used to determine initial viability of THz medical imaging applications.