• Analysis and Suppression of Power Supply Noise for Airborne Telemetering Transmitter

      Song, Peng; Wu, Qing; Yang, Lu-yu; North China University of Technology (International Foundation for Telemetering, 2009-10)
      During the program researching on airborne telemetering transmitter of a certain remote telemetry system, small size and a variety of voltage on board are design difficulties. Due to the above important factors, the performance of power supply makes a big affect to the parameters of BPSK modulated signal, especially the EVM (Error Vector Magnitude). The author analyzes the cause of power supply noise and puts forward some suggestions to damp the noise. With these methods, the EVM of modulated signal is improved. Finally, we can conclude the related principles about the suppression of power supply noise.
    • Performance of an OFDM-Based DVB-T System and its FPGA Implementation

      Yang, Luyu; Song, Peng; Song, Qingping; North China University of Technology (International Foundation for Telemetering, 2009-10)
      Orthogonal frequency division multiplexing (OFDM) is a new technique for data transmission. Conforming to the final draft of OFDM-based DVB-T (ETSI EN 300 744 V1.6.1), which is intended for digital terrestrial television broadcasting, a DVB-T baseband system is designed. The system performance is simulated in MATLAB using Simulink. Then it is implemented on Field Programmable Gate Array (FPGA) with the help of System Generator software. The result shows that OFDM is robust against multipath effect and convenient for implementation as well, thus owning a quite promising future.
    • The Technology of DBPSK Modulation-Demodulation for Telecommand in Remote Control Test System

      Song, Peng; Han, Yu-long; Mao, Chi-heng; Huang, Kun; North China University of Technology (International Foundation for Telemetering, 2009-10)
      This design adopts the software radio and DBPSK(Differential Binary Phase Shift Keying)modulation-demodulation, which detects the telecommand receiving by the guided-missile system correctly. The DBPSK modulation module in Altera FPGA chip converts the binary telecommand into DBPSK signal, which will be frequency modulated after D/A conversion. In the receiver, the FM signal is demodulated and A/D converted before sending to the FPGA. The DBPSK demodulation module in FPGA finally gets the telecommand which will be tally with the telecommand from transmitter. At last, the whole DBPSK modulation-demodulation module is embedded into the remote control test system. The design is working properly and meeting the requirements of the test system.