• Community of Programming Protocols

      Powell, Dave; Cook, Paul; Telemetry Technology Consultants, Inc.; Teletronics Technology Corporation (International Foundation for Telemetering, 2009-10)
      As new products are developed for the telemetry market, network interfaces are being used for set-up and control. This paper describes the programmability of various telemetry components that are now available and discusses the internal status functions that can be returned to the user or telemetry system via the same interface that are good indicators of system health. Possible control interfaces are discussed that could be used to interface many different components. Also discussed is the need for the Range Commanders Council to address the total programmability protocol issues related to connecting multiple components into a common setup and control bus.
    • Common Display System (CDS) at the NAVAIRWD Ranges

      Karr, Bill; Maxel, Matt; Watson, Errol; NAVAIRWD (International Foundation for Telemetering, 2009-10)
      The Common Display System (CDS) will provide all NAVAIRWD sites with a flexible Range real-time situational awareness and telemetry display/processing capability. CDS will have an extensible framework enabling all sites to quickly and conveniently develop Range unique plugins to accommodate new requirements or functionality not presently found in the applications common core plug-ins. Range unique plug-ins are separate and distinct from the application's common core engine.
    • Synchronization for Burst-Mode APSK

      Rice, Michael; Shaw, Christopher; Brigham Young University (International Foundation for Telemetering, 2009-10)
      We derive bounds on the performance of data-aided joint estimators for timing offset, carrier phase offset, and carrier frequency offset for use in an APSK packet-based communication link. It is shown that the Cramér-Rao Bound (CRB) is a function of the training sequence, the signal-to-noise ratio (SNR), and the pulse shape. We also compute APSK training sequences of different lengths that minimize the CRB for each of the parameters.
    • Standardize Your IP Traffic with TMOIP

      Grebe, Andy; Apogee Labs, Inc. (International Foundation for Telemetering, 2009-10)
      With the emergence of higher bandwidth Ethernet networks on ranges, many ranges are converting their data transport from ATM(Asynchronous Transfer Mode) networks to Ethernet networks. Both networks have their respective advantages and disadvantages, however one reoccurring issue is product interoperability. The RCC (Range Commanders Council) TTG (Telecommunications and Timing Group) created the Telemetry over IP (TMoIP 218-07) solution with input from various ranges and vendors to solve this issue. This specification allows ranges to use different vendors together for Telemetry over Ethernet, based on specific needs at each site. This paper targets those who are thinking about converting from ATM to Ethernet networks.
    • Convolutional Versus LDPC and Turbo Codes on the Rayleigh Fading Channel

      Ryan, William E.; Marcellin, Michael W.; Jagiello, Kristin; Cooper, Charlie; University of Arizona (International Foundation for Telemetering, 2009-10)
      We consider the performance of low-density parity-check (LDPC) codes, turbo codes and convolutional codes over the binary-input AWGN channel with flat Rayleigh fading. LDPC and turbo codes are capacity-approaching codes for long codewords. For short and medium codewords we seek to determine if they still outperform the industry-standard memory-6, rate-1/2 convolutional code. For a fixed SNR, the probability of error for the codes of interest are plotted as a function of codelength. We find that for very short codewords, the convolutional code performs best.
    • Towards a Low Complexity Implementation of a Multi-H CPM Demodulator

      Guéguen, Arnaud; Auvray, David; Zodiac Data Systems (International Foundation for Telemetering, 2009-10)
      Multi-h Continuous Phase Modulation (CPM) is a promising waveform for aeronautical telemetry because it is a compact spectrally efficient constant amplitude modulation. It has been selected as the Advanced Range Telemetry (ARTM) tier II waveform owing to these qualities. However, it is also a complicated waveform that has the reputation of suffering from complex demodulation processing and high sensitivity to transmission impairments and in particular synchronization aspects. In this paper we review a set of complexity reduction techniques that intend to bring this waveform into the domain of operational telemetry waveform, by allowing low complexity hardware implementation without sacrificing performance or robustness. Most techniques are adjustments of recent literature results, concerning both demodulation and synchronization. Computer simulation of a receiver implementing theses techniques shows negligible performance loss compared to optimal coherent demodulation with perfect synchronization. Hardware implementation confirms that nearly optimal performance can be achieved with hardware resource currently available in middle range FPGAs.
    • Data Flow and Remote Control in the Telemetry Network System

      Laird, Daniel T.; Morgan, Jon; Edwards Air Force Base (International Foundation for Telemetering, 2009-10)
      The Central Test and Evaluation Investment Program (CTEIP) Integrated Network Enhanced Telemetry (iNET) program is currently developing new standards for wired-wireless local area networking (LAN-WLAN) using the Internet Protocol (IP), for use in telemetry (TM) channels, under the umbrella of the Telemetry Network System (TmNS). Some advantages of TmNS are real-time command and control of instrumentation, quick-look acquisition, data retransmission and recovery ('gapless TM' or 'PCM backfill'), data segmentation, etc. The iNET team is developing and evaluating prototypes, based on commercial 802.x and other technologies, in conjunction with Range Commander's Council (RCC) Inter-Range Instrumentation Group (IRIG) standards and standards developed under the iNET program.
    • The Design of Web-Oriented Distributed Post-Flight Data Processing Network System

      Dang, Huaiyi; Zhang, Junmin; Wang, Jianjun; Chinese Flight Test Establishment (International Foundation for Telemetering, 2009-10)
      It talks about a distributed net-based flight test raw data processing system, web-oriented and application oriented. The system likes a normal one, consists of database servers, web servers and NAS storage server, but with the particular distributed task scheduler servers and the calculation servers. Each type server can be a team. The user can use WEB browser with the help of OCX control to setup his own processing task according to his need, choose which plane, which flight no., and defining the parameters, flight time segments, extracting rate etc to be processed. The system can accomplish the processing using the embedded application middleware, various data processing modules in database, with the scheduler servers and processing servers. The system can meet many users' demand of huge quantity non-structural flight raw data quickly and efficient processing at the short time, ensure the flight data enhanced management, to keep from copying and distributing the great quantity raw data inefficiently and out-of-management.
    • Excel Application Leverages XML to Configure Both Airborne Data Acquisition System and Ground Based Data Processing System

      Dunnaville, Ted; Lindsey, Mark; Lockheed Martin Aeronautics Company (International Foundation for Telemetering, 2009-10)
      Flight test instrumentation/data processing environments consist of three components: * Airborne Data Acquisition System * Telemetry Control Room * Post Test Data Processing System While these three components require the same setup information, most often they are configured separately using a different tool for each system. Vendor supplied tools generally do not interact very well with hardware other than their own. This results in the multiple entry of the configuration information. Multiple entries of data for large complex systems are susceptible to data entry errors as well as version synchronization issues. This paper describes the successful implementation of a single Microsoft Excel based tool being used to program the instrumentation data acquisition hardware, the real-time telemetry system, and the post test data processing system on an active test program. This tool leverages the XML interfaces provided by vendors of telemetry equipment.
    • Using Telemetry Science, An Adaptation of Prognostic Algorithms for Predicting Normal Space Vehicle Telemetry Behavior from Space for Earth and Lunar Satellites and Interplanetary Spacecraft

      Losik, Len; Failure Analysis (International Foundation for Telemetering, 2009-10)
      Prognostic technology uses a series of algorithms, combined forms a prognostic-based inference engine (PBIE) for the identification of deterministic behavior embedded in completely normal appearing telemetry from fully functional equipment. The algorithms used to define normal behavior in the PBIE from which deterministic behavior is identified can be adapted to quantify normal spacecraft telemetry behavior while in orbit about a moon or planet or during interplanetary travel. Time-series analog engineering data (telemetry) from orbiting satellites and interplanetary spacecraft are defined by harmonic and non-harmonic influences which shape it behavior. Spectrum analysis can be used to understand and quantify the fundamental behavior of spacecraft analog telemetry and relate the behavior's frequency and phase to its time-series behavior through Fourier analysis.
    • Applying the iNET System Management Standard

      Grace, Thomas B.; Bertrand, Allison R.; Newton, Todd A.; Naval Air Systems Command (NAVAIR); Southwest Research Institute (International Foundation for Telemetering, 2009-10)
      The System Management Standard Working Group (SMSWG) of the integrated Network- Enhanced Telemetry (iNET) project has developed a standard for the management of the Telemetry Network System (TmNS). The introduction of Internet Protocol (IP) networks on test ranges has created the potential for greater flexibility and improved usability in the telemetry environment. This paper will discuss how to apply the TmNS System Management Standard to best take advantage of the new networking paradigm. Some of the benefits include the ability to monitor or change resource allocations (such as data subscriptions and network routes), detect fault conditions, or change configuration during any phase of a test. An example of a common test scenario will illustrate one example of how the Simple Network Management Protocol (SNMP) commands, queries, and events included in the System Management Standard may be used to extend the capabilities of the TmNS. The discussion topics will include discovering devices, monitoring status variables, receiving device events, performing configuration, and performing control from the TmNS Management Information Base (MIB). This scenario gives guidance to ranges and test conductors in selecting and using System Management capabilities.
    • The Design of a Video Acquisition System for JSF

      Vu, Doug; Roach, John; Lockheed Martin Aeronautics; Telectronics Technology Corporation (International Foundation for Telemetering, 2009-10)
      The F-35 program, known as the Joint Strike Fighter (JSF), is the largest DOD program ever awarded. There are three F-35 variations, each intended to meet the specific needs of the Air Force, Navy, Marine Corps, and Allies. The F-35 Joint Strike Fighter represents the newest advanced military aircraft to make use of Fibre Channel as its primary avionics information transport network. In addition to its use for carrying tactical information systems data, the Fibre Channel network will also transport the real-time digital video used in the cockpit; primarily the pilot's helmet mounted display (HMD) and the high-resolution configurable panoramic cockpit display (PCD). In addition to the fighter's instrumentation configuration for orange wire and avionics data, the aircraft will carry a separate instrumentation package to allow for both the recording and telemetry of either high-resolution Fibre Channel digital video or standard resolution analog video inputs during flight tests. This multiplexer is designed to record cockpit video and audio data, while supporting an option for the test engineer to select up to three out of eight video and audio inputs for real-time telemetry to the ground. This paper describes the architecture of this system, along with the techniques used to reduce the 5 MBps Fibre Channel digital video to a bandwidth acceptable for telemetry.
    • Temporal, Spectral, and Spatial Treat Simulation Using a Towed Airborne Plume Simulator (TAPS)

      Taylor, Rick; Redmond, Neal; Balding, Jeff; Science Applications International Corporation; Center for Countermeasures (International Foundation for Telemetering, 2009-10)
      Efforts are underway to develop Infrared countermeasure (IRCM) systems to defend aircraft against IR guided surface-to-air (SAM) and air-to-air (AAM) missiles. One such system is the Large Aircraft Infrared Counter Measure (LAIRCM) which employs temporal, spatial, and spectral missile warning techniques. There is no current technique however, for installed system flight testing of such countermeasures in a realistic temporal, spatial, and spectral environment. This paper is an introduction to the Towed Airborne Plume Simulator (TAPS), a system designed to address this test shortfall. The TAPS operational concept is described as well as techniques for simulating missile signatures.
    • Automatic Format Generation Techniques for Network Data Acquisition Systems

      Kupferschmidt, Benjamin; Pesciotta, Eric; Teletronics Technology Corporation (International Foundation for Telemetering, 2009-10)
      Configuring a modern, high-performance data acquisition system is typically a very timeconsuming and complex process. Any enhancement to the data acquisition setup software that can reduce the amount of time needed to configure the system is extremely useful. Automatic format generation is one of the most useful enhancements to a data acquisition setup application. By using Automatic Format Generation, an instrumentation engineer can significantly reduce the amount of time that is spent configuring the system while simultaneously gaining much greater flexibility in creating sampling formats. This paper discusses several techniques that can be used to generate sampling formats automatically while making highly efficient use of the system's bandwidth. This allows the user to obtain most of the benefits of a hand-tuned, manually created format without spending excessive time creating it. One of the primary techniques that this paper discusses is an enhancement to the commonly used power-of-two rule, for selecting sampling rates. This allows the system to create formats that use a wider variety of rates. The system is also able to handle groups of related measurements that must follow each other sequentially in the sampling format. This paper will also cover a packet based formatting scheme that organizes measurements based on common sampling rates. Each packet contains a set of measurements that are sampled at a particular rate. A key benefit of using an automatic format generation system with this format is the optimization of sampling rates that are used to achieve the best possible match for each measurement's desired sampling rate.
    • A Programmable Dual Modulator Testbed for MIMO Applications

      Kosbar, Kurt; Seaber, John; Barkley, Jacob; Ngo, Tony; Poettgen, Adam; Missouri University of Science and Technology (International Foundation for Telemetering, 2009-10)
      Multiple-input multiple-output (MIMO) systems use multiple transmitters and receivers to increase the capacity and reliability of radio frequency communication links used in multipath and disruptive environments. This paper describes a recently designed hardware testbed that can be used as a modulator and transmitter for MIMO systems which use two transmitters. The testbed consists of a field programmable gate array (FPGA) that generates the I/Q baseband signals for the two transmitters. A wide variety of modulation and coding formats, up to data rates of 10 Mbps, can be implemented by reprogramming the FPGA. The dual I/Q outputs from the FPGA are then fed to a pair of quadrature modulators, which have programmable carrier frequencies from 1,025 to 2,450 MHz. The system is implemented on a single printed circuit board, and has dual RF outputs with programmable power levels up to 0 dBm.
    • Proposed iNET Network Security Architecture

      Dean, Richard; Dukes, Renata; Morgan State University (International Foundation for Telemetering, 2009-10)
      Morgan State University's iNET effort is aimed at improving existing telemetry networks by developing more efficient operation and cost effectiveness. This paper develops an enhanced security architecture for the iNET environment in order to protect the network from both inside and outside adversaries. This proposed architecture addresses the key security components of confidentiality, integrity and authentication. The security design for iNET is complicated by the unique features of the telemetry application. The addition of encryption is complicated by the need for robust synchronization needed for real time operation in a high error environment.
    • A COTS and Standards Based Solution to Weapons System Integration

      Scardello, Michael A.; Packham, William R.; Diehl, Michael; Spiral Technology, Inc.; TRAX International, Inc.; U.S. Army Yuma Proving Ground (International Foundation for Telemetering, 2009-10)
      The Weapons System Test and Integration Laboratory (WSTIL) at the U.S. Army Yuma Proving Ground (YPG) will provide a new capability for ground based testing in this arena. Current and near term YPG scheduled test programs will benefit tremendously from this enhanced ground test capability provided by the Weapons STIL. The Weapons STIL's design goals center on the implementation of an automated mechanism for testing the weapon systems and sensors that are currently the responsibility of the YPG facility. To meet the Army's weapons test needs the Weapons STIL incorporates various levels of digital stimulation, human-in-the-loop, hardware-in-the-loop, and installed system test facility (ISTF) techniques to maximize ground testing in order to focus and optimize subsequent open air flight testing. This paper describes this work in progress.
    • Pacific Ranges Interoperable Test & Evaluation Capabilities (PRITEC)

      Hermann, Scott A.; Wigent, Mark A.; Chavez, Tomas C.; PMRF; SAIC; CSC (International Foundation for Telemetering, 2009-10)
      The office of the Defense Test Resources Management Center (DTRMC) has developed two major programs to achieve Joint/Interoperable exercises between DoD test and training ranges. Joint Mission Environment Test Capability (JMETC) defines a LVC environment in which Joint operations take place, while the Test and Training Enabling Architecture (TENA) defines the communication within that environment. Putting these programs to everyday use has been a challenge for the ranges. The Pacific Missile Range Facility (PMRF) is executing the Central Test & Evaluation Investment Program (CTEIP) sponsored Pacific Ranges Interoperable Test & Evaluation Capabilities (PRITEC) project designed to develop a set of tools that will facilitate implementation of JMETC and TENA. This paper will discuss the PRITEC project in detail.
    • Network Telemetry Link Throughput Maximization Approaches

      Moodie, Myron L.; Newton, Todd A.; Abbott, Ben A.; Southwest Research Institute (International Foundation for Telemetering, 2009-10)
      The use of Ethernet and Internet Protocol (IP) networking technologies in flight test instrumentation and telemetry systems is rapidly increasing, driven by the ubiquity, scalability, and flexibility of networking technologies. Networks first made a positive impact in ground station infrastructure and have recently been emerging in test article data acquisition infrastructure in programs such as the A380, 787, P-8A, and Future Combat Systems. The next logical step is to provide a two-way network telemetry link to fully extend the flexibility of the network between the test articles and ground station. The United States Department of Defense (DoD) integrated Network-Enhanced Telemetry (iNET) program is currently working to build a standardized network telemetry link for exactly this purpose. When developing a network telemetry link, the limited availability of telemetry spectrum must be considered and thus it is critical to choose system-level approaches to maximize the throughput achieved from the link. This paper first presents the statistics of the network data that would typically use this link based on empirical data from current network-based flight test instrumentation systems. Several approaches to using a network telemetry link are then presented. Predicted achievable throughputs of each approach are presented that are derived from the statistics of the empirical test data. Based on this, the paper presents recommendations for building systems using network telemetry links.
    • Isually Lossless Coding for Color Aerial Images Using PEG

      Marcellin, Michael W.; Bilgin, Ali; Oh, Han; Kim, Yookyung; University of Arizona (International Foundation for Telemetering, 2009-10)
      This paper describes a psychophysical experiment to measure visibility thresholds (VT) for quantization distortion in JPEG2000 and an associated quantization algorithm for visually lossless coding of color aerial images. The visibility thresholds are obtained from a quantization distortion model based on the statistical characteristics of wavelet coefficients and the deadzone quantizer of JPEG2000, and the resulting visibility thresholds are presented for the luminance component (Y) and two chrominance components (Cb and Cr). Using the thresholds, we have achieved visually lossless coding for 24-bit color aerial images at an average bitrate of 4.17 bits/pixels, which is approximately 30% of the bitrate required for numerically lossless coding.