• Coded SOQPSK-TG Using the Soft Output Viterbi Algorithm

      Perrins, Erik; Alam, Daniel; University of Kansas (International Foundation for Telemetering, 2009-10)
      In this paper we present a system-level description of a serially concatenated convolutional coding scheme for shaped offset quadrature phase shift keying, telemetry group (SOQPSK-TG). Our paper describes the operation of various system modules. In addition, implementation details and references for each module in the system are provided. The modified Soft Output Viterbi Algorithm (SOVA) is employed for decoding inner and outer convolutional codes. The modified SOVA possess strong performance and low-complexity cost. The comparison of the modified (SOVA) and Max-Log-maximum a posteriori (MAP) decoding algorithm is presented. The SOVA after a simple modification displays the same performance as Max-Log-MAP algorithm, which is demonstrated by the simulation results. The advantage of the simple implementation of the modified SOVA makes it superior to Max-Log-MAP for our purposes.
    • Collaborative Environment Learning: The Key to Localization of Soldiers in Urban Environments

      Moafipoor, Shahram; Bock, Lydia; Fayman, Jeffrey A.; Mader, Gerry; Strong, Michael; Geodetics Inc. (International Foundation for Telemetering, 2009-10)
      Several navigation technologies exist, which can facilitate the generation of Time Space Positioning Information (TSPI) in urban environments. These include GPS, image-based localization, radio-based localization and dead reckoning. This paper first presents a basic overview of these techniques including advantages and limitations of each. We present an approach to localization in urban environments, based on environment learning and collaborative navigation using multiple homogeneous and non-homogeneous localization technologies, fused to form a multi-sensor system.
    • Common Display System (CDS) at the NAVAIRWD Ranges

      Karr, Bill; Maxel, Matt; Watson, Errol; NAVAIRWD (International Foundation for Telemetering, 2009-10)
      The Common Display System (CDS) will provide all NAVAIRWD sites with a flexible Range real-time situational awareness and telemetry display/processing capability. CDS will have an extensible framework enabling all sites to quickly and conveniently develop Range unique plugins to accommodate new requirements or functionality not presently found in the applications common core plug-ins. Range unique plug-ins are separate and distinct from the application's common core engine.
    • Community of Programming Protocols

      Powell, Dave; Cook, Paul; Telemetry Technology Consultants, Inc.; Teletronics Technology Corporation (International Foundation for Telemetering, 2009-10)
      As new products are developed for the telemetry market, network interfaces are being used for set-up and control. This paper describes the programmability of various telemetry components that are now available and discusses the internal status functions that can be returned to the user or telemetry system via the same interface that are good indicators of system health. Possible control interfaces are discussed that could be used to interface many different components. Also discussed is the need for the Range Commanders Council to address the total programmability protocol issues related to connecting multiple components into a common setup and control bus.
    • Convolutional Versus LDPC and Turbo Codes on the Rayleigh Fading Channel

      Ryan, William E.; Marcellin, Michael W.; Jagiello, Kristin; Cooper, Charlie; University of Arizona (International Foundation for Telemetering, 2009-10)
      We consider the performance of low-density parity-check (LDPC) codes, turbo codes and convolutional codes over the binary-input AWGN channel with flat Rayleigh fading. LDPC and turbo codes are capacity-approaching codes for long codewords. For short and medium codewords we seek to determine if they still outperform the industry-standard memory-6, rate-1/2 convolutional code. For a fixed SNR, the probability of error for the codes of interest are plotted as a function of codelength. We find that for very short codewords, the convolutional code performs best.
    • A COTS and Standards Based Solution to Weapons System Integration

      Scardello, Michael A.; Packham, William R.; Diehl, Michael; Spiral Technology, Inc.; TRAX International, Inc.; U.S. Army Yuma Proving Ground (International Foundation for Telemetering, 2009-10)
      The Weapons System Test and Integration Laboratory (WSTIL) at the U.S. Army Yuma Proving Ground (YPG) will provide a new capability for ground based testing in this arena. Current and near term YPG scheduled test programs will benefit tremendously from this enhanced ground test capability provided by the Weapons STIL. The Weapons STIL's design goals center on the implementation of an automated mechanism for testing the weapon systems and sensors that are currently the responsibility of the YPG facility. To meet the Army's weapons test needs the Weapons STIL incorporates various levels of digital stimulation, human-in-the-loop, hardware-in-the-loop, and installed system test facility (ISTF) techniques to maximize ground testing in order to focus and optimize subsequent open air flight testing. This paper describes this work in progress.
    • Data Acquisition Blasts Off - Space Flight Testing

      Curry, Diarmuid; ACRA Control Inc. (International Foundation for Telemetering, 2009-10)
      In principle, the requirements for a flight test data acquisition system for space testing (launch vehicles, orbiters, satellites and International Space Station (ISS) installations) are very similar to those for more earth-bound applications. In practice, there are important environmental and operational differences that present challenges for both users and vendors of flight test equipment. Environmental issues include the severe vibration and shock experienced on take-off, followed by a very sharp thermal shock, culminating (for orbital vehicles) in a low temperature, low pressure, high radiation operating environment. Operational issues can include the need to dynamically adapt to changing configurations (for example when an instrumented stage is released) and the difficulty in Telemetering data during the initial launch stage from a vehicle that may not be recoverable, and therefore does not offer the option of an on-board recorder. Addressing these challenges requires simple, rugged and flexible solutions. Traditionally these solutions have been bespoke, specifically designed equipment. In an increasingly cost-conscious environment engineers are now looking to commercial off-the-shelf solutions. This paper discusses these solutions and highlights the issues that instrumentation engineers need to consider when designing or selecting flight test equipment.
    • Data Flow and Remote Control in the Telemetry Network System

      Laird, Daniel T.; Morgan, Jon; Edwards Air Force Base (International Foundation for Telemetering, 2009-10)
      The Central Test and Evaluation Investment Program (CTEIP) Integrated Network Enhanced Telemetry (iNET) program is currently developing new standards for wired-wireless local area networking (LAN-WLAN) using the Internet Protocol (IP), for use in telemetry (TM) channels, under the umbrella of the Telemetry Network System (TmNS). Some advantages of TmNS are real-time command and control of instrumentation, quick-look acquisition, data retransmission and recovery ('gapless TM' or 'PCM backfill'), data segmentation, etc. The iNET team is developing and evaluating prototypes, based on commercial 802.x and other technologies, in conjunction with Range Commander's Council (RCC) Inter-Range Instrumentation Group (IRIG) standards and standards developed under the iNET program.
    • Design and Implementation of an Inertial Measurement Unit (IMU) for Small Diameter Ballistic Applications

      Bukowski, Edward F.; Brown, T. Gordon; Aberdeen Proving Ground (International Foundation for Telemetering, 2009-10)
      The US Army Research Laboratory currently uses a variety of ballistic diagnostic systems for gathering aerodynamic information pertaining to gun launched munitions. Sensors are a vital component of each of these diagnostic systems. Since multiple sensors are commonly used, they are often configured into a sensor suite or inertial measurement unit (IMU). In order to gather information on smaller diameter projectiles, a small diameter IMU was designed using commercial-off-the-shelf (COTS) sensors and components. This IMU was first designed with a 21.6mm diameter and then later reintegrated into a 17.5mm diameter unit. The IMU provides up to ten sensor data channels which can be used to make in-flight projectile motion measurements. These measurements are then used in the determination of the projectile's aerodynamics. It has been successfully flight tested on a variety of projectiles. It has been used in conjunction with an on-board recorder (OBR) to take measurements on 40mm and 25mm projectiles. It has also been used in a telemetry based system on-board a flare stabilized 25mm projectile. This paper covers the design of the IMU and gives examples of various sensor data.
    • Design Considerations for Networked Data Acquisition Systems

      Cranley, Nikki; Corry, Diarmuid; ACRA Control Inc. (International Foundation for Telemetering, 2009-10)
      Ethernet technology offers numerous benefits for networked Flight Test Instrumentation (FTI) systems such as increased data rates, flexibility, scalability and most importantly interoperability owing to the inherent interface, protocol and technological standardization. However, the best effort nature of Ethernet is in sharp contrast to the intrinsic determinism of tradition FTI systems. The challenge for network designers is to optimize the configuration of the Ethernet network to meet the data processing demands in terms of reliability and latency. This paper discusses the necessary planning and design phases to investigate, analyze, fine-tune and optimize the networks performance.
    • The Design of a Video Acquisition System for JSF

      Vu, Doug; Roach, John; Lockheed Martin Aeronautics; Telectronics Technology Corporation (International Foundation for Telemetering, 2009-10)
      The F-35 program, known as the Joint Strike Fighter (JSF), is the largest DOD program ever awarded. There are three F-35 variations, each intended to meet the specific needs of the Air Force, Navy, Marine Corps, and Allies. The F-35 Joint Strike Fighter represents the newest advanced military aircraft to make use of Fibre Channel as its primary avionics information transport network. In addition to its use for carrying tactical information systems data, the Fibre Channel network will also transport the real-time digital video used in the cockpit; primarily the pilot's helmet mounted display (HMD) and the high-resolution configurable panoramic cockpit display (PCD). In addition to the fighter's instrumentation configuration for orange wire and avionics data, the aircraft will carry a separate instrumentation package to allow for both the recording and telemetry of either high-resolution Fibre Channel digital video or standard resolution analog video inputs during flight tests. This multiplexer is designed to record cockpit video and audio data, while supporting an option for the test engineer to select up to three out of eight video and audio inputs for real-time telemetry to the ground. This paper describes the architecture of this system, along with the techniques used to reduce the 5 MBps Fibre Channel digital video to a bandwidth acceptable for telemetry.
    • The Design of Web-Oriented Distributed Post-Flight Data Processing Network System

      Dang, Huaiyi; Zhang, Junmin; Wang, Jianjun; Chinese Flight Test Establishment (International Foundation for Telemetering, 2009-10)
      It talks about a distributed net-based flight test raw data processing system, web-oriented and application oriented. The system likes a normal one, consists of database servers, web servers and NAS storage server, but with the particular distributed task scheduler servers and the calculation servers. Each type server can be a team. The user can use WEB browser with the help of OCX control to setup his own processing task according to his need, choose which plane, which flight no., and defining the parameters, flight time segments, extracting rate etc to be processed. The system can accomplish the processing using the embedded application middleware, various data processing modules in database, with the scheduler servers and processing servers. The system can meet many users' demand of huge quantity non-structural flight raw data quickly and efficient processing at the short time, ensure the flight data enhanced management, to keep from copying and distributing the great quantity raw data inefficiently and out-of-management.
    • The Development and the Evaluation of a Quasi-Real Time Decision Aid Tool

      Leite, Nelson Paiva Oliveira; Lopes, Leonardo Mauricio de Faria; Walter, Fernando; Grupo Especial de Ensaios em Vôo; Instituto Tecnológico de Aeronáutica (International Foundation for Telemetering, 2009-10)
      In an experimental flight test campaign, the usage of a real time Ground Telemetry System (GTS) provides mandatory support for three basic essential services: a) Safety storage of Flight Tests Instrumentation (FTI) data, in the occurrence of a critical aircraft failure; b) Monitoring of critical flight safety parameters to avoid the occurrence of accidents; and c) Monitoring of selected parameters that validates all tests points. At the operational side the test ranges typically works in two phases: a) In real time where the GTS crew performs test validation and test point selection with Telemetry data; and b) In post mission where the engineering crew performs data analysis and reduction with airborne recorded data. This process is time consuming because recorded data has to be downloaded, converted to Engineering Units (EU), sliced, filtered and processed. The main reason for the usage of this less efficient process relies in the fact that the real time Telemetry data is less reliable as compared to recorded data (i.e. it contains more noise and some dropouts). With the introduction of new technologies (i.e. i-NET) the telemetry link could be very reliable, so the GTS could perform data reduction analysis immediately after the receipt of all valid tests points, while the aircraft is still flying in a quasi-real time environment. To achieve this goal the Brazilian Flight Test Group (GEEV) along with EMBRAER and with the support of Financiadora de Estudos e Projetos (FINEP) started the development of a series of Decision Aid Tools that performs data reduction analysis into the GTS in quasi-real time. This paper presents the development and the evaluation of a tool used in Air Data System Calibration Flight Tests Campaign. The application receives the Telemetry data over either a TCP/IP or a SCRAMnet Network, performs data analysis and test point validation in real time and when all points are gathered it performs the data reduction analysis and automatically creates HTML formatted tests reports. The tool evaluation was carried out with the instruction flights for the 2009 Brazilian Flight Test School (CEV). The results present a great efficiency gain for the overall Flight Test Campaign.
    • Development of a Synthetic Beamforming Antenna - From Drawing Board to Reality

      Kelkar, Anand; Lamarra, Norm; Vaughan, Thomas; Creative Digital Systems (International Foundation for Telemetering, 2009-10)
      Following-up on an ITC 2006 paper, "From RF to bits with Synthetic Beamforming", we follow the development and fielding of a Digital Beamforming (DBF) Antenna. This antenna, built for an airborne Telemetry application, supports 10 individual polarization-diverse beams and immediately converts RF to IF at the antenna element through a suite of LNBs. The IF is then digitized and all subsequent processing is performed through an array of 200+ FPGAs, including DBF, optimal combining, demodulation, and IF upconversion. We present our Model-Based Design approach, which allowed us to develop and test the system incrementally and rapidly, particularly during the transition from factory testing to flight operations, where several unexpected problems were discovered. Our software tool set enabled us to dissect the System behavior via post-mission replay, and our detailed simulations were instrumental in developing mitigation quickly. The System-level impacts and root causes of some of these issues are also discussed. We believe the flexibility of DBF and the modular software architecture were key in quickly mitigating many of these unforeseen real-world issues without hardware modification.
    • Direct Spatial Antenna Modulation for Phased-Array Applications

      Uhl, Brecken; Invertix Corporation (International Foundation for Telemetering, 2009-10)
      New technologies are sought to meet the requirements of evolving telemetry capabilities such as new operating bands, increased test article and ground segment collaboration, and on-the-fly quality of service (QOS) management. Smart antennas may contribute to this evolution by directing signal energy where and when it is needed. Direct spatial antenna modulation (DSAM) represents a new approach to cost-effective smart antennas potentially offering benefits such as post-amplifier modulation, polarization reconfigurability, phase-shifterless phased arrays, oscillator-less frequency conversion, and pre-receiver processing gain. The basic DSAM approach has recently been proven through analysis, simulation, and prototyping, with significant implications for future capabilities.
    • Effects of Synchronization Error on Space Time Block Codes Equipped with FSK Waveforms

      Potter, Chris; Kosbar, Kurt; Panagos, Adam; Dynetics, Inc.; Missouri University of Science and Technology (International Foundation for Telemetering, 2009-10)
      Space-time Coding (STC) for Multiple-Input Multiple-Output (MIMO) wireless communication systems is an effective technique for providing robust wireless link performance in telemetry systems. This paper investigates the degradation in system performance when synchronization errors between the transmitter and receiver are present. Specifically, expressions that quantify the increase in symbol-error-rate as a function of symbol synchronization error are derived for a two-transmit and single receive antenna MISO system using binary frequency shift keying waveforms. These results are then extended to the MIMO case. The analytic results are verified with simulation results that show close agreement between the theoretical expressions and Monte Carlo simulation runs.
    • Electrostatic Approach for Mitigation of Communication Attenuation During Directed Energy Testing

      Kundrapu, Madhusudhan; Keidar, Michael; Jones, Charles; George Washington University; Edwards Air Force Base (International Foundation for Telemetering, 2009-10)
      Electrostatic approach is considered for mitigation of communication attenuation during the testing of laser powered directed energy weapon. Mitigation analysis is carried out for two target materials Al and Ti. Plasma parameters are obtained using one dimensional coupled analysis of laser-target interaction. Influence of laser beam frequency on plasma parameters is addressed. Sheath thickness is obtained using transient sheath calculations. It is found that uninterrupted telemetry can be achieved | using a maximum bias voltage of 10 kV, through Al plasma for fluences below 5 J/cm² and through Ti plasma for fluences below 2 J/cm².
    • Excel Application Leverages XML to Configure Both Airborne Data Acquisition System and Ground Based Data Processing System

      Dunnaville, Ted; Lindsey, Mark; Lockheed Martin Aeronautics Company (International Foundation for Telemetering, 2009-10)
      Flight test instrumentation/data processing environments consist of three components: * Airborne Data Acquisition System * Telemetry Control Room * Post Test Data Processing System While these three components require the same setup information, most often they are configured separately using a different tool for each system. Vendor supplied tools generally do not interact very well with hardware other than their own. This results in the multiple entry of the configuration information. Multiple entries of data for large complex systems are susceptible to data entry errors as well as version synchronization issues. This paper describes the successful implementation of a single Microsoft Excel based tool being used to program the instrumentation data acquisition hardware, the real-time telemetry system, and the post test data processing system on an active test program. This tool leverages the XML interfaces provided by vendors of telemetry equipment.
    • Expanding the Role of Telemetry in the Aircraft and Space Vehicle Factory Acceptance Test to a Design Driver Allowing 100% Equipment to be Identified that Suffer Infant Mortality Failures

      Losik, Len; Failure Analysis (International Foundation for Telemetering, 2009-10)
      The aircraft, satellite, missile and launch vehicle industry suffer from catastrophic infant mortality failures rate at ~25% even after exhaustive and comprehensive factory acceptance testing is completed causing unreliable systems, program delays and cost overruns. The discovery of the presence of deterministic behavior in equipment analog telemetry generated during factory acceptance testing preceding all equipment failures, which is identifiable using prognostic analysis, eliminates infant mortality failures resulting in increased equipment reliability, lower program cost, shorter test and delivery schedule and increased equipment usable life ensuring mission success. The addition of a single, embedded analog telemetry measurement to all active equipment allowing all equipment to be identified during factory testing that fails, and all equipment that will fail within the first year of use, to be identified will allow vehicle builders to lower program cost, use less equipment, use less testing and have a shorter delivery schedule and more reliable equipment and longer equipment usable life expanding the use of telemetry to identifying equipment that will fail well into the future.
    • The F-22 Radar Instrumentation System

      Natale, Louis; Roach, John; Lockheed Martin Aeronautics; Telectronics Technology Corporation (International Foundation for Telemetering, 2009-10)