• Adding Flight Termination Capability to a Missile Telemetry Section

      Kujiraoka, Scott R.; Fielder, Russell G.; Sandberg, Alvia D.; NAVAIR (International Foundation for Telemetering, 2009-10)
      Past presented papers [1,2] have discussed the integration efforts of incorporating Central Test & Evaluation Investment Program (CTEIP) sponsored Joint Advanced Missile Instrumentation (JAMI) components (namely the JAMI TSPI Unit-JTU), Commercial off the Shelf (COTS) parts (e.g. ARTM Tier I SO-QPSK Transmitter, Encryptor and Thermal Battery), and in-house developed devices (such as PCM Encoder and Dual Band Antenna) into a five-inch diameter Missile Telemetry (TM) Section. A prototype of this TM Section has been built up and integrated into an All Up Round (AUR) Missile and twice flown as a Captive Carried Test Missile (CTM) on an F/A-18 jet with great success. This TM Section has passed all flight qualification testing (including environmental and electro-magnetic interference-EMI tests). This paper will detail the current efforts to incorporate Flight Termination System (FTS) capabilities into this TM section. In addition, the effort to upgrade some Navy and Air Force Test Ranges (with JAMI Ground Stations and Decommutators/Demodulators) to track and gather data from this Missile containing the new TM section will be discussed.
    • The Test and Training Enabling Architecture (TENA) Enabling Technology for the Joint Mission Environment Test Capability (JMETC) in Live, Virtual, and Constructive (LVC) Environments

      Hudgins, Gene; Poch, Keith; Secondine, Juana; TENA Software Development Activity (SDA) (International Foundation for Telemetering, 2009-10)
      The Joint Mission Environment Test Capability (JMETC) is a distributed live, virtual, and constructive (LVC) testing capability developed to support the acquisition community and to demonstrate Net-Ready Key Performance Parameters (KPP) requirements in a customer-specific Joint Mission Environment (JME). JMETC, using the Test and Training Enabling Architecture (TENA), provides connectivity to the Services' distributed test capabilities and simulations, and Industry test resources. TENA is well-designed for supporting JMETC events through its architecture and software capabilities which enable interoperability among range instrumentation systems, facilities, and simulations. TENA, used in major exercises and distributed test events, is also interfacing with other emerging range systems.
    • A COTS and Standards Based Solution to Weapons System Integration

      Scardello, Michael A.; Packham, William R.; Diehl, Michael; Spiral Technology, Inc.; TRAX International, Inc.; U.S. Army Yuma Proving Ground (International Foundation for Telemetering, 2009-10)
      The Weapons System Test and Integration Laboratory (WSTIL) at the U.S. Army Yuma Proving Ground (YPG) will provide a new capability for ground based testing in this arena. Current and near term YPG scheduled test programs will benefit tremendously from this enhanced ground test capability provided by the Weapons STIL. The Weapons STIL's design goals center on the implementation of an automated mechanism for testing the weapon systems and sensors that are currently the responsibility of the YPG facility. To meet the Army's weapons test needs the Weapons STIL incorporates various levels of digital stimulation, human-in-the-loop, hardware-in-the-loop, and installed system test facility (ISTF) techniques to maximize ground testing in order to focus and optimize subsequent open air flight testing. This paper describes this work in progress.
    • Advantages of Using a Modular Architecture to Extenuate the Effects of Disruptive Technologies

      Khaburzaniya, Yason; L-3 Communications (International Foundation for Telemetering, 2009-10)
      Disruptive technologies affect every industry and often indicate the rate of technological advancement. Observing previous technological leaps can help ensure that the next disruptive technology innovation has less of an impact. Many methodologies that were developed to combat the high adoption costs of disruptive technologies in the field of computer engineering can be applied to the satellite and telemetry world. One such methodology is modular architecture in software.
    • The Technology of DBPSK Modulation-Demodulation for Telecommand in Remote Control Test System

      Song, Peng; Han, Yu-long; Mao, Chi-heng; Huang, Kun; North China University of Technology (International Foundation for Telemetering, 2009-10)
      This design adopts the software radio and DBPSK(Differential Binary Phase Shift Keying)modulation-demodulation, which detects the telecommand receiving by the guided-missile system correctly. The DBPSK modulation module in Altera FPGA chip converts the binary telecommand into DBPSK signal, which will be frequency modulated after D/A conversion. In the receiver, the FM signal is demodulated and A/D converted before sending to the FPGA. The DBPSK demodulation module in FPGA finally gets the telecommand which will be tally with the telecommand from transmitter. At last, the whole DBPSK modulation-demodulation module is embedded into the remote control test system. The design is working properly and meeting the requirements of the test system.
    • Coded SOQPSK-TG Using the Soft Output Viterbi Algorithm

      Perrins, Erik; Alam, Daniel; University of Kansas (International Foundation for Telemetering, 2009-10)
      In this paper we present a system-level description of a serially concatenated convolutional coding scheme for shaped offset quadrature phase shift keying, telemetry group (SOQPSK-TG). Our paper describes the operation of various system modules. In addition, implementation details and references for each module in the system are provided. The modified Soft Output Viterbi Algorithm (SOVA) is employed for decoding inner and outer convolutional codes. The modified SOVA possess strong performance and low-complexity cost. The comparison of the modified (SOVA) and Max-Log-maximum a posteriori (MAP) decoding algorithm is presented. The SOVA after a simple modification displays the same performance as Max-Log-MAP algorithm, which is demonstrated by the simulation results. The advantage of the simple implementation of the modified SOVA makes it superior to Max-Log-MAP for our purposes.
    • Performance Comparison of OFDM and DSSS on Aeronautical Channels

      Cole-Rhodes, Arlene; Dean, Richard; Ehichioya, Daniel; Golriz, Arya; Morgan State University (International Foundation for Telemetering, 2009-10)
      This paper develops a performance framework for OFDM by contrasting its performance with Direct Sequence Spread Spectrum (DSSS) over aeronautical channels. Each of the OFDM and DSSS modulated simulations are put through the channel and compared on terms of signal to noise ratio (SNR) versus bit error rate. The simulation will show that DSSS will have better power efficiency on multipath channels because the rake receiver adds all multipath components to strengthen the receiver. By contrast OFDM with an equalizer will have better spectrum efficiency results where QAM modulation of multiple tones allows for high data rates in a limited bandwidth. This work develops a framework for contrasting the performance of the rake receiver and the equalizer for operation on multipath channels. By comparing these schemes on various channels the choice of OFDM for iNET can be clearly understood and evaluated.
    • Synchronization for Burst-Mode APSK

      Rice, Michael; Shaw, Christopher; Brigham Young University (International Foundation for Telemetering, 2009-10)
      We derive bounds on the performance of data-aided joint estimators for timing offset, carrier phase offset, and carrier frequency offset for use in an APSK packet-based communication link. It is shown that the Cramér-Rao Bound (CRB) is a function of the training sequence, the signal-to-noise ratio (SNR), and the pulse shape. We also compute APSK training sequences of different lengths that minimize the CRB for each of the parameters.
    • Preamble Design for Symbol Timing Estimation from SOQPSK-TG Waveforms

      Erkmen, Baris I.; Tkacenko, Andre; Okino, Clayton M.; California Institute of Technology (International Foundation for Telemetering, 2009-10)
      Data-aided symbol synchronization for bursty communications utilizes a predetermined modulation sequence, i.e., a preamble, preceding the payload. For effective symbol synchronization, this preamble must be designed in accordance with the modulation format. In this paper, we analyze preambles for shaped offset quadrature phase-shift keying (SOQPSK) waveforms. We compare the performance of several preambles by deriving the Cram´er-Rao bound (CRB), and identify a desirable one for the Telemetry Group variant of SOQPSK. We also demonstrate, via simulation, that the maximum likelihood estimator with this preamble approaches the CRB at moderate signal-to-noise ratio.
    • Low-Density Parity-Check Codes Which Can Correct Three Errors Under Iterative Decoding

      Vasic, Bane; Marcellin, Michael W.; Krishnan, Anantha Raman; Chilappagari, Shashi Kiran; University of Arizona (International Foundation for Telemetering, 2009-10)
      In this paper, we give necessary and sufficient conditions for low-density parity-check (LDPC) codes with column-weight four to correct three errors when decoded using hard-decision message-passing decoding. We then give a construction technique which results in codes satisfying these conditions. We also provide numerical assessment of code performance via simulation results.
    • Convolutional Versus LDPC and Turbo Codes on the Rayleigh Fading Channel

      Ryan, William E.; Marcellin, Michael W.; Jagiello, Kristin; Cooper, Charlie; University of Arizona (International Foundation for Telemetering, 2009-10)
      We consider the performance of low-density parity-check (LDPC) codes, turbo codes and convolutional codes over the binary-input AWGN channel with flat Rayleigh fading. LDPC and turbo codes are capacity-approaching codes for long codewords. For short and medium codewords we seek to determine if they still outperform the industry-standard memory-6, rate-1/2 convolutional code. For a fixed SNR, the probability of error for the codes of interest are plotted as a function of codelength. We find that for very short codewords, the convolutional code performs best.
    • Implementation of an LDPC Decoder Using Functional Programming Languages

      Perrins, Erik; Gill, Andy; Weling, Brett W.; University of Kansas (International Foundation for Telemetering, 2009-10)
      In this paper we present an implementation of a low density parity check (LDPC) decoder in the functional programming language Haskell. We describe the LDPC code in a very general sense and show how it is used in our implementation. We then discuss the advantages of using a functional programming language like Haskell to model this decoder, as well as the implications of doing so. Finally, we evaluate our model in terms of algorithm accuracy.
    • Measuring and Evaluating Best Source Selection

      Corry, Diarmuid; ACRA Control Inc. (International Foundation for Telemetering, 2009-10)
      To properly evaluate and characterize the performance of a bit synchronizer we need to apply a known data stream and then adjust several interference parameters to measure the effect on synchronization performance: white noise, offset and gain variations and frequency and phase shifts. The task becomes more complex when we consider the performance of a best source selector (BSS) which combines the performance of two or more bit synchronizers to achieve better bit error rates and more consistent synchronization than can be achieved with one alone. Each of the parameters (noise, offset, gain, phase) are often different for each bit synchronizer, and may vary over time. In addition the incoming bit streams can drift in time (possibly 100s of bits) with respect to each other. This paper discusses how these parameters are measured, and looks in particular at the problem of evaluating a BSS. Results showing the performance that can be achieved when aligning and combining multiple streams are presented and discussed.
    • The Design of Web-Oriented Distributed Post-Flight Data Processing Network System

      Dang, Huaiyi; Zhang, Junmin; Wang, Jianjun; Chinese Flight Test Establishment (International Foundation for Telemetering, 2009-10)
      It talks about a distributed net-based flight test raw data processing system, web-oriented and application oriented. The system likes a normal one, consists of database servers, web servers and NAS storage server, but with the particular distributed task scheduler servers and the calculation servers. Each type server can be a team. The user can use WEB browser with the help of OCX control to setup his own processing task according to his need, choose which plane, which flight no., and defining the parameters, flight time segments, extracting rate etc to be processed. The system can accomplish the processing using the embedded application middleware, various data processing modules in database, with the scheduler servers and processing servers. The system can meet many users' demand of huge quantity non-structural flight raw data quickly and efficient processing at the short time, ensure the flight data enhanced management, to keep from copying and distributing the great quantity raw data inefficiently and out-of-management.
    • Post Processing Data Analysis

      Irick, Nancy; Raytheon Missile Systems (International Foundation for Telemetering, 2009-10)
      Once the test is complete, the job of the Data Analyst has begun. Files from the various acquisition systems are collected. It is the job of the analyst to put together these files in a readable format so the success or failure of the test can be attained. This paper will discuss the process of breaking down these files, comparing data from different systems, and methods of presenting the data.
    • Collaborative Environment Learning: The Key to Localization of Soldiers in Urban Environments

      Moafipoor, Shahram; Bock, Lydia; Fayman, Jeffrey A.; Mader, Gerry; Strong, Michael; Geodetics Inc. (International Foundation for Telemetering, 2009-10)
      Several navigation technologies exist, which can facilitate the generation of Time Space Positioning Information (TSPI) in urban environments. These include GPS, image-based localization, radio-based localization and dead reckoning. This paper first presents a basic overview of these techniques including advantages and limitations of each. We present an approach to localization in urban environments, based on environment learning and collaborative navigation using multiple homogeneous and non-homogeneous localization technologies, fused to form a multi-sensor system.
    • The Development and the Evaluation of a Quasi-Real Time Decision Aid Tool

      Leite, Nelson Paiva Oliveira; Lopes, Leonardo Mauricio de Faria; Walter, Fernando; Grupo Especial de Ensaios em Vôo; Instituto Tecnológico de Aeronáutica (International Foundation for Telemetering, 2009-10)
      In an experimental flight test campaign, the usage of a real time Ground Telemetry System (GTS) provides mandatory support for three basic essential services: a) Safety storage of Flight Tests Instrumentation (FTI) data, in the occurrence of a critical aircraft failure; b) Monitoring of critical flight safety parameters to avoid the occurrence of accidents; and c) Monitoring of selected parameters that validates all tests points. At the operational side the test ranges typically works in two phases: a) In real time where the GTS crew performs test validation and test point selection with Telemetry data; and b) In post mission where the engineering crew performs data analysis and reduction with airborne recorded data. This process is time consuming because recorded data has to be downloaded, converted to Engineering Units (EU), sliced, filtered and processed. The main reason for the usage of this less efficient process relies in the fact that the real time Telemetry data is less reliable as compared to recorded data (i.e. it contains more noise and some dropouts). With the introduction of new technologies (i.e. i-NET) the telemetry link could be very reliable, so the GTS could perform data reduction analysis immediately after the receipt of all valid tests points, while the aircraft is still flying in a quasi-real time environment. To achieve this goal the Brazilian Flight Test Group (GEEV) along with EMBRAER and with the support of Financiadora de Estudos e Projetos (FINEP) started the development of a series of Decision Aid Tools that performs data reduction analysis into the GTS in quasi-real time. This paper presents the development and the evaluation of a tool used in Air Data System Calibration Flight Tests Campaign. The application receives the Telemetry data over either a TCP/IP or a SCRAMnet Network, performs data analysis and test point validation in real time and when all points are gathered it performs the data reduction analysis and automatically creates HTML formatted tests reports. The tool evaluation was carried out with the instruction flights for the 2009 Brazilian Flight Test School (CEV). The results present a great efficiency gain for the overall Flight Test Campaign.
    • Intellibus™: Network Solution for Distributed High-Performance Data Acquisition Systems

      Ellerbrock, Philip J.; Winkelman, Christian H.; The Boeing Company (International Foundation for Telemetering, 2009-10)
      The demands for accurate, phase coherent, data acquisition is increasing with the advances in data analysis and data mining techniques. In addition, the space that data acquisition equipment and its wiring can use is getting smaller as structures become more efficient and space available is absorbed by new capabilities. Thus, there exists a need for instrumentation systems that can be distributed such that it reduces size, wire count, weight and cost. Boeing has developed a feature-rich multi-point transducer bus suitable for highly time deterministic, multiple sample rate, data acquisition systems. The new technology enables the use of emerging high-performance analog and digital signal conditioning integrated circuits into miniature, low-cost modules and smart transducers suitable for flight-test, ground-test, and laboratory applications. This paper explores the development of this technology, the technical challenges it addresses, the benefits the technology brings, and its current applications.
    • Automatic Format Generation Techniques for Network Data Acquisition Systems

      Kupferschmidt, Benjamin; Pesciotta, Eric; Teletronics Technology Corporation (International Foundation for Telemetering, 2009-10)
      Configuring a modern, high-performance data acquisition system is typically a very timeconsuming and complex process. Any enhancement to the data acquisition setup software that can reduce the amount of time needed to configure the system is extremely useful. Automatic format generation is one of the most useful enhancements to a data acquisition setup application. By using Automatic Format Generation, an instrumentation engineer can significantly reduce the amount of time that is spent configuring the system while simultaneously gaining much greater flexibility in creating sampling formats. This paper discusses several techniques that can be used to generate sampling formats automatically while making highly efficient use of the system's bandwidth. This allows the user to obtain most of the benefits of a hand-tuned, manually created format without spending excessive time creating it. One of the primary techniques that this paper discusses is an enhancement to the commonly used power-of-two rule, for selecting sampling rates. This allows the system to create formats that use a wider variety of rates. The system is also able to handle groups of related measurements that must follow each other sequentially in the sampling format. This paper will also cover a packet based formatting scheme that organizes measurements based on common sampling rates. Each packet contains a set of measurements that are sampled at a particular rate. A key benefit of using an automatic format generation system with this format is the optimization of sampling rates that are used to achieve the best possible match for each measurement's desired sampling rate.
    • Community of Programming Protocols

      Powell, Dave; Cook, Paul; Telemetry Technology Consultants, Inc.; Teletronics Technology Corporation (International Foundation for Telemetering, 2009-10)
      As new products are developed for the telemetry market, network interfaces are being used for set-up and control. This paper describes the programmability of various telemetry components that are now available and discusses the internal status functions that can be returned to the user or telemetry system via the same interface that are good indicators of system health. Possible control interfaces are discussed that could be used to interface many different components. Also discussed is the need for the Range Commanders Council to address the total programmability protocol issues related to connecting multiple components into a common setup and control bus.