• Data Filtering Unit (DFU): Dealing With Cryptovariable Keys in Data Recorded Using the IRIG 106 Chapter 10 Format

      Manning, Dennis; Williams, Rick; Ferrill, Paul; Eglin Air Force Base; Scientific Data Systems, LLC; Avionics Test and Analysis Corp. (International Foundation for Telemetering, 2006-10)
      Recent advancements in IRIG 106 Chapter 10 recording systems allow the recording of all on board 1553 bus and PCM traffic to a single media. These advancements have also brought about the issue of extracting data with different levels of classification that was written to single location. Carrying GPS “smart” weapons further complicates this issue since the recording of GPS keys adds another level of classification to the mix. The ability to separate and/or remove higher level data from a data product is now required. This paper describes the design of a hardware device that will filter specified data from IRIG 106 Chapter 10 recorder memory modules (RMMs) to prevent the storage device or computer from becoming classified at the level of the specified data.
    • IDAPS MULTI-CAMERA STORE SEPARATION ANALYSIS USING CAD-BASED MODELING

      Paulick, Michael J.; TYBRIN Corporation; Eglin Air Force Base (International Foundation for Telemetering, 2006-10)
      The Image Data Automated Processing System (IDAPS), developed by the 96th Communications Group Test and Analysis Division at Eglin AFB, uses a CAD-based image matching technique to calculate a 6DOF trajectory of a store separation event. The system has been used successfully for single camera release sequences, but needed to be extended for multi-camera releases. This is vital for bomber missions where several cameras are needed to cover a store separation event.
    • Wireless Sensor System for Airborne Applications

      Berdugo, Albert; Grossman, Hy; Schofield, Nicole; Musteric, Steven; Teletronics Technology Corporation; Eglin Air Force Base (International Foundation for Telemetering, 2006-10)
      Adding an instrumentation / telemetry system to a test vehicle has historically required an intrusive installation for wiring and powering all elements of the system from the sensor to the telemetry transmitter. In some applications there is need for a flexible and modular instrumentation and telemetry system that can be installed with minimal intrusiveness on an aircraft without the need for permanent modifications. Such an application may benefit from the use of a miniaturized, inexpensive network of wireless sensors. This network will communicate its data to a central unit installed within the aircraft. This paper describes recent efforts associated with the Advanced Subminiature Telemetry System (ASMT) Initial Test Capability Project. It discusses the challenges in developing a wireless sensor network system for use in an airborne environment. These include selection of frequencies, COTS wireless devices, batteries, system synchronization, data bandwidth calculations, and mechanical structure for external installation. The paper will also describe the wireless network architecture as well as the architecture of the wireless sensor and the central control unit.