• International Telemetering Conference Proceedings, Volume 42 (2006)

      Unknown author (International Foundation for Telemetering, 2006-10)
    • INTERFERENCE MITIGATION AND CHANNEL EQUALIZATION FOR ARTM TIER-1 WAVEFORMS USING KALMAN FILTER

      Saquib, Mohammad; Popescu, Otilia; Popescu, Dimitrie C.; Rice, Michael; University of Texas; Brigham Young University (International Foundation for Telemetering, 2006-10)
      In this paper we describe a new method that is applicable to mitigating both multipath interference and adjacent channel interference (ACI) in aeronautical telemetry applications using ARTM Tier-1 waveforms. The proposed method uses a linear equalizer that is derived using Kalman filtering theory, which has been used for channel equalization for high-speed communication systems. We illustrate the proposed method with numerical examples obtained from simulations that show the bit error rate performance (BER) for different modulation schemes.
    • ACHIEVING HIGH-ACCURACY TIME DISTRIBUTION IN NETWORK-CENTRIC DATA ACQUISITION AND TELEMETRY SYSTEMS WITH IEEE 1588

      Grim, Evan T.; Southwest Research Institute (International Foundation for Telemetering, 2006-10)
      Network-centric data acquisition and telemetry systems continue to gain momentum and adoption. However, inherent non-deterministic network delays hinder these systems’ suitability for use where high-accuracy timing information is required. The emerging IEEE 1588 standard for time distribution offers the potential for real-time data acquisition system development using cost-effective, standards-based network technologies such as Ethernet and IP multicast. This paper discusses the challenges, realities, lessons, and triumphs experienced using IEEE 1588 in the development and implementation of such a large-scale network-centric data acquisition and telemetry system. IEEE 1588 clears a major hurdle in moving the network-centric buzz from theory to realization.
    • A VERSATILE, SOFTWARE PROGRAMMABLE TELEMETRY SYSTEM FOR SATELLITE LAUNCH VEHICLES

      Pillai, Sreelal Sreedharan; Sankarattil, Sreekumar; Padmanabhan, Padma; Rao, Vinod Padmanabha; Pillai, Sivasubramonia; Pillai, Madaswamy; Kollamparambil, Damodaran; Kurian, Thomas; Thirunavukkarasu, Chidambaram; Indian Space Research Organization (International Foundation for Telemetering, 2006-10)
      We describe the design and development of a baseband telemetry system for multistage launch vehicles. The system is organized as a three tier one with remote data acquisition and processing units and a centralized control unit. The front-end Data Acquisition Units (DAUs) feature software programmable amplification, offset, filtering and sensor excitation and thus are flexible to interface directly to a variety of sensors used in launch vehicles. The Data Processing Units (DPUs) gather data from DAUs through a serial link compatible to RS-485 standards and carry out a variety of data analysis and data compression functions on selected channels under software control. The central Telemetry Control Unit (TCU) receives this data through a transformer isolated link compatible to MIL-1553B standards and performs the functions of data delay, data storage, onboard computer data monitoring, PCM formatting and pre-modulation signal conditioning to achieve miniaturization. The configuration and features of this telemetry system make its integration simple without compromising on data integrity and reliability and suit the adoption of futuristic technologies and concepts such as smart sensor networks, adaptability, reconfiguration and vehicle health management.
    • AD-HOC WIRELESS NETWORKS: A COMMERCIALISATION CASE STUDY

      Rogers, Derek; University of South Australia (International Foundation for Telemetering, 2006-10)
      This paper presents a case study of the commercialisation of an ad-hoc wireless network technology from a subsidiary of a multinational company. The paper does not disclose any intellectual property specifics, the organisations or individuals involved. Instead the paper focuses on generic issues associated with technology transfer; exploration of market opportunities, market validation, the identification of a novel business model and economic validation. The paper wraps the case study within the academic context of commercialisation providing substantive literature sources, tools and techniques for readers faced with similar challenges; tools and techniques that can be applied irrespective of the underlying technology.
    • AUTOMATION SYSTEM FOR THE FLIGHT TEST LABORATORY (SALEV)

      Sousa, Lucas Benedito dos Reis; Leite, Nelson Paiva Oliveira; Walter, Fernando; Cunha, Wagner Chiepa; CTA - Grupo Especial de Ensaios em Vôo; ITA - Divisão de Eletrônica (International Foundation for Telemetering, 2006-10)
      A novel Automation System for the Flight Test Laboratory (SALEV) is developed in full compliance with EA-4/02 Standard (i.e. Expression of the Uncertainty of Measurement in Calibration) to compute the uncertainty of the measurement at the calibration laboratory of the Flight Tests Group (GEEV). The GEEV performs flight test campaigns to certificate and/or develop aircrafts and its systems. Then, flight tests instrumentation (FTI) systems are developed and installed in the test bed. The FTI data acquisition complies with IRIG Standard. The FTI is composed by a data acquisition system, which performs signal conditioning, sampling and quantization of all measurements provided by a set of transducers. All parameters are coded in a PCM format and represented in a non-dimensional numerical form (i.e. counts).To allow the establishment of a relation between the non-dimensional form and the physical quantity, a calibration process is carried out to provide the coefficients of a calibration curve. This process is also used to determine the systematic and random errors (i.e. the uncertainty). The accuracy and reliability of calibration process should comply with the requirements, which are customized for each flight test campaign. The satisfactory performance of the SALEV calibration process is achieved by automation in all steps. The SALEV development is presented, which includes the following steps: · Database definition; · Study of all steps and parts that forms the calibration process (i.e. from transducer to final uncertainty determination) to determine its associated uncertainties; · Automation of the entire calibration process (including the process itself up to the effective control of standard and instruments); · Development of algorithms to compute the uncertainty compliant with EA 4/02; and · System validation in compliance with ISO/IEC 17025. As result of the SALEV operation, it could be verified that measurement quality was improved, and the required time for calibration was substantially reduced. Also the standardization of this process allows failures forecast due to aging of systems parameters (i.e. bias).
    • ADVANTAGES OF GPS OVER RADAR IN WIND WEIGHTING OF UNGUIDED SOUNDING ROCKETS

      May, Linda R.; Honeywell Technology Solutions, Inc.; NASA Goddard Space Flight Center (International Foundation for Telemetering, 2006-10)
      “Wind Weighting” is the process of assessing the effect of wind on a launch vehicle and determining launcher settings which would counteract that effect. This paper discusses the advantages of using GPS radiosondes to determine wind profiles over the historical method of tracking balloon positions with radar for the purposes of Wind Weighting. The primary advantages are lower costs and greater portability. Also presented is evidence of improved accuracy and reliability. Engineering testing is described and test results are reported.
    • A DESIGN OF A DIGITALLY CONTROLLABLE WIDEBAND MICROWAVE RECEIVER

      Huang, Heng; Legarsky, Justin; Lei, Qiang; University of Missouri-Columbia; Brigham Young University (International Foundation for Telemetering, 2006-10)
      Radar echo sounders provide a safe, inexpensive and effective means of obtaining ice sheet thickness. As the roughness of ice surface/subsurface depends on the radio wavelength, wideband radar sensors can provide flexibility for ice thickness measurement under areas with various surface conditions. This paper presents the design of a digitally controllable wideband microwave receiver for a potential radar sounding system. Its radio frequency (RF) frequency ranges from 50 to 500 MHz, while the intermediate frequency (IF) bandwidth is 20 MHz. The receiver provides eight channels for different RF band choices, as well as a number of convenient gain settings. Testing measurements have also been conducted to verify the design requirements.
    • COMMUNICATIONS OVER AIRCRAFT POWER LINES: A PRACTICAL IMPLEMENTATION

      Tian, Hai; Trojak, Tom; Jones, Charles H.; Teletronics Technology Corporation; Edwards Air Force Base (International Foundation for Telemetering, 2006-10)
      This paper presents a practical implementation of a hardware design for transmission of data over aircraft power lines. The intent of such hardware is to significantly reduce the wiring in the aircraft instrumentation system. The potential usages of this technology include pulse code modulation (PCM), Ethernet and other forms data communications. Details of the fieldprogrammable gate array (FPGA) and printed circuit board (PCB) designs of the digital and analog front end will be discussed. The power line is not designed for data transmission. It contains considerable noise, multipath effects, and time varying impedance. Spectral analysis data of an aircraft is presented to indicate the difficulty of the problem at hand. A robust modulation is required to overcome the harsh environment and to provide reliable transmission. Orthogonal frequency division multiplexing (OFDM) has been used in power line communication industry with a great deal of success. OFDM has been deemed the most appropriate technology for high-speed data transmission on aircraft power lines. Additionally, forward error correction (FEC) techniques are discussed.
    • A SYSTEM APPROACH TO A NETWORK CENTRIC AIRBORNE DATA ACQUISITION SYSTEM

      Berdugo, Albert; Hildin, John; Teletronics Technology Corporation (International Foundation for Telemetering, 2006-10)
      Airborne data acquisition systems have changed very little over the years. Their growth has primarily been in the area of digital filtering and the acquisition of new avionic busses. Communication between data acquisition units operating as a system still employs Time Division Multiplexing scheme. These schemes utilize command and data busses like CAIS and PCM. Although this approach is highly efficient, it has many drawbacks. These drawbacks have resulted in rigid system architecture, system bandwidth limitations, highly specialized recorders to acquire unique avionic busses that would otherwise overwhelm the system bandwidth, and unidirectional flow of data and control. This paper describes a network centric data acquisition system that is Ethernet based. Although Ethernet is known as an asynchronous bus, the paper will describe a deterministic time distribution over the bus per IEEE-1588 that allows the use of a packet network for airborne data acquisition. The acquisition unit within the network system is defined by its MIB (Management Information Base) and operates as a data source unit. Other network components may operate as a data sink unit, such as recorders, or as a data source and sink. The role of different units in the network system will be evaluated. The paper will also describe network gateways that allow the use of traditional PCM systems with a network-based system.
    • ENHANCEMENTS TO THE DATA DISPLAY MARKUP LANGUAGE

      Graul, Michael; Fernandes, Ronald; Hamilton, John L.; Jones, Charles H.; Morgan, Jon; Knowledge Based Systems, Inc; Edwards Air Force Base (International Foundation for Telemetering, 2006-10)
      This paper presents the description of the updated Data Display Markup Language (DDML), a neutral format for data display configurations. The development of DDML is motivated by the fact that in joint service program systems, there is a critical need for common data displays to support distributed T&E missions, irrespective of the test location, data acquisition system, and display system. DDML enables standard data displays to be specified for any given system under test, irrespective of the display vendor or system in which they will be implemented. The version 3.0 of DDML represents a more mature language than the version 1.0 presented at the 2003 ITC. The updated version has been validated for completeness and robustness by developing translators between DDML and numerous vendor formats. The DDML schema has been presented to the Range Commander’s Council (RCC) Data Multiplex Committee for consideration for inclusion in the IRIG 106 standard. The DDML model will be described in terms of both the XML schema and the UML model, and various examples of DDML models will be presented. The intent of this paper is to solicit specific input from the community on this potential RCC standard.
    • STATIC AND DYNAMIC EVALUATION OF A GPS ATTITUDE DETERMINATION SYSTEM BASED ON NON-DEDICATED GPS RECEIVERS

      Leite, Nelson Paiva Oliveira; Walter, Fernando; CTA - Grupo Especial de Ensaios em Vôo; ITA - Divisão de Telecomunicações (International Foundation for Telemetering, 2006-10)
      For the final evaluation of a GPS attitude determination algorithm, it was determined its true performance in terms of accuracy, reliability and dynamic response. To accomplish that, a flight test campaign was carried out to validate the attitude determination algorithm. In this phase, the measured aircraft attitude was compared to a reference attitude, to allow the determination of the errors. The system was built using non-dedicated airborne GPS receivers, and a complete Flight Tests Instrumentation (FTI) System. The flight test campaign was carried out at the Brazilian’s Flight Test Group T-25C 1956 Basic Trainer aircraft. The performance and accuracy of the system is demonstrated under static and dynamics tests profiles, which are fully compliant with the Federal Aviation Administration (FAA) Advisory Circular (AC) 25-7A. Dynamic response of the system is evaluated.
    • REFERENCE DESIGN FOR A SQUADRON LEVEL DATA ARCHIVAL SYSTEM

      Ferrill, Paul; Avionics Test and Analysis Corporation (International Foundation for Telemetering, 2006-10)
      As more aircraft are fitted with solid state memory recording systems, the need for a large data archival storage system becomes increasingly important. In addition, there is a need to keep classified and unclassified data separate but available to the aircrews for training and debriefing along with some type of system for cataloging and searching for specific missions. This paper will present a novel approach along with a reference design for using commercially available hardware and software and a minimal amount of custom programming to help address these issues.
    • REAL TIME DATA WAREHOUSING AND ON LINE ANALYTICAL PROCESSING AT ABERDEEN TEST CENTER

      Reil, Michael J.; Bartlett, T. George; Henry, Kevin; SFA Inc.; Aberdeen Test Center; Sverdrup Technology Inc. (International Foundation for Telemetering, 2006-10)
      This paper is a follow on to a paper presented at the 2005 International Telemetry Conference by Dr. Samuel Harley et. al., titled Data, Information, and Knowledge Management. This paper will describe new techniques and provide further detail into the inner workings of the VISION (Versatile Information System – Integrated, Online) Engineering Performance Data Mart.
    • TRANSITION FROM ANALOG TO DIGITAL RECORDERS FOR TELEMETRY AT THE WESTERN RANGE

      Hedricks, Michael J.; Sussex, Jeff; Streich, Ronald G.; Vandenberg AFB (International Foundation for Telemetering, 2006-10)
      The transition of PCM recording from analog to digital recorders was completed at many test ranges more than a decade ago as marked by delivery of data on S-VHS tape, CD-ROM, DVD, ZIP disc, JAZ disc, 8mm tape and DLT tape for low rate data and D-1 cassettes for high rate data. Data then quickly began distribution via the internet and other networks. Analog recorders have remained a necessary legacy for the long transition to convert from analog to digital (PCM) data transmission from the test vehicles. However, the new digital recorder capabilities have removed this requirement to convert the transmissions from the test vehicle. Analog signal and predetection recording on digital recorders has been successfully demonstrated at costs below the existing analog recorders. Application of new techniques in a methodical transition program to the new digital recorders has proven the many benefits of recording wider bandwidths with excellent repeatability. Repeatability issues are primarily in the very low error sources of the processing system because the major analog error sources of the analog tape recorders, analog time code readers, analog demodulators, etc have been greatly reduced. This paper provides test results of recording higher signal rates and bandwidths of the new programs and describes the techniques and implementation through procedures of the Western Range transition from analog to digital recorders. Surprising results show predetection and analog signal recording costs are nearly the same as PCM recording costs due to the price of deliverable media with respect to mission recording requirements.
    • PERSONNEL/EQUIPMENT TRACKING SYSTEM (P/ETS)

      Leftwich, Thomas E.; Edwards AFB (International Foundation for Telemetering, 2006-10)
      The purpose of the Personnel/Equipment Tracking System (P/ETS) is to provide ground safety and real-time surveillance awareness of all personnel and equipment authorized entry to the Edwards AFB Precision Impact Bombing and Laser Test Ranges. This includes multiple hazardous sites within an area that encompasses approximately 140 square miles. The P/ETS utilizes an off-the-shelf Global Positioning System (GPSFlight) which provides full-time tracking and display of all on-board transmitter-equipped elements. A line-of-sight wireless-to-fiber network system is employed to acquire and transport positional data to display systems within the range safety control tower. Utilization of P/ETS has indicated accurate tracking display in real time, particular advantages for night time operations, prevention of hazardous area intrusion, and relocation of miss-oriented personnel. This system is an economical solution for meeting the ground safety requirements within the confines of the Precision Impact Bombing and Laser Test Ranges.
    • MINING IRIG-106 CHAPTER 10 AND HDF-5 DATA

      Lockard, Michael T.; Rajagopalan, R.; Garling, James A.; EMC Corporation, Solutions Engineering Group (International Foundation for Telemetering, 2006-10)
      Rapid access to ever-increasing amounts of test data is becoming a problem. The authors have developed a data-mining methodology solution approach to provide a solution to catalog test files, search metadata attributes to derive test data files of interest, and query test data measurements using a web-based engine to produce results in seconds. Generated graphs allow the user to visualize an overview of the entire test for a selected set of measurements, with areas highlighted where the query conditions were satisfied. The user can then zoom into areas of interest and export selected information.
    • THE VIDEO SYSTEM OF LAUNCH VEHICLE

      Xiangwu, Gao; Juan, Lin; Zhengguang, He; Beijing Institute of Astronautical Systems Engineering; China Academy of Launch Vehicle Technology (International Foundation for Telemetering, 2006-10)
      XX launch vehicle has been flying onboard video system which includes video cameras, data compression devices and channel switch device for the second Chinese spaceflight. The camera is a PAL analog camera that been sampled and compressed by compression device. The compressed digital video data is combined with telemetry data into the telemetry radio channel. Lighting is provided by sunlight, or a light has been equipped when sunlight is unavailable. IRIG-B timing is used to correlate the video with other vehicle telemetry. The video system’s influences to the vehicle flight have been decreased to minimum.
    • AN UNMANNED AERIAL VEHICLE PROJECT FOR UNDERGRADUATES

      Beard, Randal W.; Taylor, Clark N.; Bradley, Justin; Prall, Breton; Brigham Young University (International Foundation for Telemetering, 2006-10)
      Brigham Young University recently introduced a project for undergraduates in which a miniature unmanned aerial vehicle system is constructed. The system is capable of autonomous flight, takeoff, landing, and navigation through a planned path. In addition, through the use of video and telemetry collected by the vehicle, accurate geolocation of specified targets is performed. This paper outlines our approach and successes in facilitating this accomplishment at the undergraduate level.
    • DESIGNING AN AUTOMATIC FORMAT GENERATOR FOR A NETWORK DATA ACQUISITION SYSTEM

      Kupferschmidt, Benjamin; Berdugo, Albert; Teletronics Technology Corporation (International Foundation for Telemetering, 2006-10)
      In most current PCM based telemetry systems, an instrumentation engineer manually creates the sampling format. This time consuming and tedious process typically involves manually placing each measurement into the format at the proper sampling rate. The telemetry industry is now moving towards Ethernet-based systems comprised of multiple autonomous data acquisition units, which share a single global time source. The architecture of these network systems greatly simplifies the task of implementing an automatic format generator. Automatic format generation eliminates much of the effort required to create a sampling format because the instrumentation engineer only has to specify the desired sampling rate for each measurement. The system handles the task of organizing the format to comply with the specified sampling rates. This paper examines the issues involved in designing an automatic format generator for a network data acquisition system.