Tian, Hai; Trojak, Tom; Jones, Charles H.; Teletronics Technology Corporation; Edwards Air Force Base (International Foundation for Telemetering, 2006-10)
      This paper presents a practical implementation of a hardware design for transmission of data over aircraft power lines. The intent of such hardware is to significantly reduce the wiring in the aircraft instrumentation system. The potential usages of this technology include pulse code modulation (PCM), Ethernet and other forms data communications. Details of the fieldprogrammable gate array (FPGA) and printed circuit board (PCB) designs of the digital and analog front end will be discussed. The power line is not designed for data transmission. It contains considerable noise, multipath effects, and time varying impedance. Spectral analysis data of an aircraft is presented to indicate the difficulty of the problem at hand. A robust modulation is required to overcome the harsh environment and to provide reliable transmission. Orthogonal frequency division multiplexing (OFDM) has been used in power line communication industry with a great deal of success. OFDM has been deemed the most appropriate technology for high-speed data transmission on aircraft power lines. Additionally, forward error correction (FEC) techniques are discussed.

      Schultz, Stephen; Selfridge, Richard; Newman, Jason; Brigham Young University (International Foundation for Telemetering, 2006-10)
      In this paper we will present a new fiber sensor integrated monitor (FSIM) to be used in an embedded instrumentation system (EIS). The proposed system consists of a super luminescent diode (SLD) as a broadband source, a novel high speed tunable MEMS filter with built in photodetector, and an integrated microprocessor for data aggregation, processing, and transmission. As an example, the system has been calibrated with an array of surface relief fiber Bragg gratings (SR-FBG) for high speed, high temperature monitoring. The entire system was built on a single breadboard less than 50 cm² in area.
    • CELLULAR BROADBAND TELEMETRY OPTIONS FOR THE 21st CENTURY: Looking at broadband cellular from a telemetry perspective

      Smith, Brian J.; Omniwav Mobile, Inc. (International Foundation for Telemetering, 2006-10)
      With the recent broadband upgrades to various cellular infrastructures and the myriad new emerging wireless broadband standards and services offered by carriers, it is often difficult to navigate this sea of technology. In deciding the best choice for broadband telemetry applications, one must look not only at the technology, but also at the economics, market timing, bandwidths, legacy issues, future expandability and coverage, security, protocols, and the requirements of the specific application. This paper reviews the technology roadmap of cellular providers keeping these issues in perspective as they apply to TCP/IP data for images, audio, video, and other broadband telemetry data using CDMA 1xRTT, EV-DO, and EV-DO Rev A systems as well as GSM GPRS/EDGE, UMTS/W-CDMA, HSDPA, and HSUPA networks. Lastly, issues seen by system integrators when using cellular channels for telemetry applications are examined, and a case is presented for overcoming many of these issues through the use of cellular routers.

      Reid, Eric; RT Logic Inc. (International Foundation for Telemetering, 2006-10)
      Modern telemetry and data streams are often encrypted. The majority of range testing activities require multiple ground stations to collect these streams and send them to a central processing location. Each of these streams currently needs to be individually decrypted before best source selection, processing and analysis. Using innovative techniques, it is possible to time correlate these encrypted streams, compare them with each other and create an output stream of better quality than any of the individual streams. This stream can then be decrypted by a single decryption device, greatly reducing cost and complexity.

      Pesciotta, Eric; Portnoy, Michael; Teletronics Technology Corporation (International Foundation for Telemetering, 2006-10)
      As data acquisition systems evolve and begin utilizing new avenues of acquisition such as Ethernet, an entirely new range of flight test capabilities become available. These new capabilities, defined by acquisition, monitoring, and varying of test measurements, enhance previous operation as they can now be realized during flight. Achieving such high levels of integration between ground station and test vehicle involves complex network protocols. Implementing such systems from scratch would be a time consuming and costly proposition. Fortunately, employing Internet protocols (TCP/IP) over Ethernet provides a cornucopia of readily available technology. Using state-of-the-art integration techniques, modern data acquisition systems can leverage years of proven technology offered by the Internet Engineering Task Force (IETF) and the World Wide Web Consortium (W3C). This paper discusses an implementation of dynamic data acquisition measurements for use in network data acquisition systems. The methodology used to determine whether or not a measurement can and should be variable during a flight test is examined in detail along with a discussion of the advantages of dynamically varying flight test measurements. Finally, an implementation is presented which successfully integrates Internet protocols with modern flight test equipment using the techniques described above for dynamic data acquisition measurements.

      Dawson, Dan; Wyle Laboratories, Telemetry and Data Systems (International Foundation for Telemetering, 2006-10)
      This paper describes an adaptive data management architecture capable of supporting order-of-magnitude data volume increases without a priori knowledge of data structures. The architecture allows users to generate and maintain data in optimal legacy formats while managing and extracting information with common analysis tools. This paper shows how an object-oriented data management system can manage both data and the knowledge imparted to the data by users.
    • Current Status of Integrating GPS and Flight Termination Capabilities into a Missile Telemetry Section

      Kujiraoka, Scott R.; Fielder, Russell G.; NAVAIR (International Foundation for Telemetering, 2006-10)
      Last year (2005), a paper discussed the efforts of integrating Joint Advanced Missile Instrumentation (JAMI) Program components (JAMI TSPI Unit - JTU, and the Flight Termination Safe & Arm device - FTS&A), commercial off the shelf parts (Flight Termination Receivers, Telemetry Transmitter, Encryptor and Thermal Batteries) and in-house developed devices (PCM Encoder and Tri-band Antenna with integrated Limiter, Filter, & Amplifier) into a five-inch diameter Missile Telemetry (TM) Section. This retrofitted missile would be captive-carried on a F/A-18 jet. This paper is a continuation of that one presented at the 2005 International Telemetry Conference (ITC) Symposium. It annotates the latest status of the JAMI Effort, as well as the Follow-On Effort to qualify the Missile TM Section for an actual missile firing. This would include the developmental and flight qualification efforts for the Explosive Train (Detonation Cord-to-Cutter Ring Assembly) and Thermal Batteries.
    • Analytic Solutions for Optimal Training on Fading Channels

      Kosbar, Kurt; Panagos, Adam; University of Missouri (International Foundation for Telemetering, 2006-10)
      Wireless communication systems may use training signals for the receiver to learn the fading coefficients of the channel. Obtaining channel state information (CSI) at the receiver is often times necessary for the receiver to correctly detect and demodulate transmitted symbols. The type of training signal, the length of time to spend training, and the frequency of training are all important parameters in these types of systems. In this work, we derive an analytic expression for calculating the optimal training parameters for continuously fading channels. We also provide simulation results showing why this training scheme is considered optimal.

      Rice, Michael; Nelson, Tom; Brigham Young University (International Foundation for Telemetering, 2006-10)
      Motivated by the success of the ARTM Tier-1 modulation known as Shaped Offset QPSK, this paper examines whether improved spectral efficiency can be achieved using an a Shaped Offset 8PSK. Three possible interpretations of this question are examined and it is shown that there does not appear to be a shaped offset 8-PSK in the context of aeronautical telemetry.
    • A Time Correlated Approach to Adaptable Digital Filtering

      Grossman, Hy; Pellarin, Steve; Teletronics Technology Corporation (International Foundation for Telemetering, 2006-10)
      Signal conditioning is a critical element in all data telemetry systems. Data from all sensors must be band limited prior to digitization and transmission to prevent the potentially disastrous effects of aliasing. While the 6th order analog low-pass Butterworth filter has long been the de facto standard for data channel filtering, advances in digital signal processing techniques now provide a potentially better alternative. This paper describes the challenges in developing a flexible approach to adaptable data channel filtering using DSP techniques. Factors such as anti-alias filter requirements, time correlated sampling, decimation and filter delays will be discussed. Also discussed will be the implementation and relative merits and drawbacks of various symmetrical FIR and IIR filters. The discussion will be presented from an intuitive and practical perspective as much as possible.

      Leftwich, Thomas E.; Edwards AFB (International Foundation for Telemetering, 2006-10)
      The purpose of the Personnel/Equipment Tracking System (P/ETS) is to provide ground safety and real-time surveillance awareness of all personnel and equipment authorized entry to the Edwards AFB Precision Impact Bombing and Laser Test Ranges. This includes multiple hazardous sites within an area that encompasses approximately 140 square miles. The P/ETS utilizes an off-the-shelf Global Positioning System (GPSFlight) which provides full-time tracking and display of all on-board transmitter-equipped elements. A line-of-sight wireless-to-fiber network system is employed to acquire and transport positional data to display systems within the range safety control tower. Utilization of P/ETS has indicated accurate tracking display in real time, particular advantages for night time operations, prevention of hazardous area intrusion, and relocation of miss-oriented personnel. This system is an economical solution for meeting the ground safety requirements within the confines of the Precision Impact Bombing and Laser Test Ranges.

      Hildin, John; Arias, Sergio; Teletronics Technology Corporation (International Foundation for Telemetering, 2006-10)
      Today’s data acquisition systems are typically comprised of data collectors connected to multiplexers via serial, point-to-point links. Data flows upstream from the sensors or avionics buses to the data acquisition units, to the multiplexer and finally to the recorder or telemetry transmitter. In a networked data acquisition system, data is transported through the network “cloud”. At the core of the network “cloud” is the network switch. The switch is responsible for distributing and directing data within the network. Network switches are commonplace in the commercial realm. Many businesses today could not function without them. A network-based data acquisition system, however, places additional burdens on the network switch. As in a commercial network, the switch in a data acquisition system must be able to distribute data packets within the network. In addition, it must be able to perform in a harsh environment, occupy a minimal amount of space, operate with limited or no external cooling, be configurable, and deal with the distribution of time information. This paper describes the required features of a ruggedized network switch and the implementation challenges facing its design. As a core component of a network-based data acquisition system, an ideal switch must be capable of operating in a large number of configurations, transporting and aggregating data between data sources and data sinks, with a mixture of devices operating at rates ranging from a few thousand bits per second to several gigabits per second, over twisted pair or fiber optic links. To ensure time coherency, the switch must also facilitate a time distribution mechanism, e.g., IEEE-1588 Precision Time Protocol (PTP). The gigabit switch described here uses the PTP to implement an end-to-end clock synchronization, for distributed acquisition nodes, to within 300 nanoseconds.

      Laird, Daniel; Temple, Kip; Edwards Air Force Base (International Foundation for Telemetering, 2006-10)
      The Central Test and Evaluation Investment Program (CTEIP) Integrated Network Enhanced Telemetry (iNET) program is currently testing a wireless local area networking (WLAN) in an L-band telemetry (TM) channel to evaluate the feasibility and capabilities of enhancing traditional TM methods in a seamless wide area network (WAN). Several advantages of networking are real-time command and control of instrumentation formats, quick-look acquisition, data retransmission and recovery (gapless TM) and test point real-time verification. These networking functions, and all others, need to be tested and evaluated. The iNET team is developing a WLAN based on 802.x technologies to test the feasibility of the enhanced telemetry implementation for flight testing.

      Portnoy, Michael; Yang, Hsueh-Szu; Teletronics Technology Corporation (International Foundation for Telemetering, 2006-10)
      Traditional data acquisition systems have relied on physical connections between data sources and data receivers to handle the routing of acquired data streams. However, these systems grow exponentially in complexity as the number of data sources and receivers increases. New techniques are needed to address the ever increasing complexity of data acquisition. Furthermore, more advanced mechanisms are needed that move past the limitations of traditional data models that connect each data source to exactly one data receiver. This paper presents a software framework for the playback of multiplexed data acquired from a network acquisition system. This framework uses multicast technologies to connect data sources with multiple data receivers. The network acquisition system is briefly introduced before the software framework is discussed. Both the challenges and advantages involved with creating such a system are presented. Finally, this framework is applied to an aviation telemetry example.

      Beard, Randal W.; Taylor, Clark N.; Bradley, Justin; Prall, Breton; Brigham Young University (International Foundation for Telemetering, 2006-10)
      Brigham Young University recently introduced a project for undergraduates in which a miniature unmanned aerial vehicle system is constructed. The system is capable of autonomous flight, takeoff, landing, and navigation through a planned path. In addition, through the use of video and telemetry collected by the vehicle, accurate geolocation of specified targets is performed. This paper outlines our approach and successes in facilitating this accomplishment at the undergraduate level.

      Huang, Heng; Legarsky, Justin; Lei, Qiang; University of Missouri-Columbia; Brigham Young University (International Foundation for Telemetering, 2006-10)
      Radar echo sounders provide a safe, inexpensive and effective means of obtaining ice sheet thickness. As the roughness of ice surface/subsurface depends on the radio wavelength, wideband radar sensors can provide flexibility for ice thickness measurement under areas with various surface conditions. This paper presents the design of a digitally controllable wideband microwave receiver for a potential radar sounding system. Its radio frequency (RF) frequency ranges from 50 to 500 MHz, while the intermediate frequency (IF) bandwidth is 20 MHz. The receiver provides eight channels for different RF band choices, as well as a number of convenient gain settings. Testing measurements have also been conducted to verify the design requirements.

      May, Linda R.; Honeywell Technology Solutions, Inc.; NASA Goddard Space Flight Center (International Foundation for Telemetering, 2006-10)
      “Wind Weighting” is the process of assessing the effect of wind on a launch vehicle and determining launcher settings which would counteract that effect. This paper discusses the advantages of using GPS radiosondes to determine wind profiles over the historical method of tracking balloon positions with radar for the purposes of Wind Weighting. The primary advantages are lower costs and greater portability. Also presented is evidence of improved accuracy and reliability. Engineering testing is described and test results are reported.

      Kelkar, Anand; Lamarra, Norm; Gonzalez, Daniel; Creative Digital Systems; Malibu Research Associates (International Foundation for Telemetering, 2006-10)
      A Synthetic Beamforming antenna was built for Airborne Telemetry. Low-Noise Block-converters translated RF to IF suitable for direct analog-to-digital conversion. Then all telemetry functions were performed digitally via parallel FPGAs for 10 independent sources. Monopulse tracking and optimal diversity combination was performed using 4 antenna quadrants at two orthogonal polarizations. Novel estimation approaches drove digital demodulation, symbol- and bit- synchronization. Final telemetry outputs include: digital, analog (video), and analog IF (e.g., for downlink relay). This program has incubated several concepts that we believe have the combined potential to significantly improve the future of telemetry.

      Andzik, Rob; Brans, Charles (Chuck) N.; RT Logic Inc. (International Foundation for Telemetering, 2006-10)
      Today Ranges are faced with the typical dilemma of doing more with less—less money, less time, and less experienced range personnel. Meanwhile, Ranges are being forced to make their operations more efficient in use of time, money, and functionality. As a result, Ranges are looking for automated ways to remotely configure and operate their tracking stations and to provide interoperability between ranges, sites, and equipment. RT Logic worked with numerous range operators and equipment vendors to create an open software architecture that provides rapid device configuration, equipment status at a glance, and automatic fault detection and isolation. RT Logic’s architecture utilizes the CORBA specification to achieve extensibility and scalability for future range requirements. Adoption of this architecture and approach will reduce costs, time, and mistakes.

      Doonan, Daniel; Fu, Tricia; Utley, Chris; Iltis, Ronald; Kastner, Ryan; Lee, Hua; University of California, Santa Barbara (International Foundation for Telemetering, 2006-10)
      This paper describes the design and successful development of an acoustic modem for potential use in underwater ecological sensor networks. The presentation includes theoretical study, design and development of both software and hardware, laboratory experiments, full-scale field tests, and the documentation and analysis of field-test results.