• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Systems Approach for Dissecting Integrated Signaling Pathways: TORC1 and Ras/PKA Regulation of Glucose Induced Growth Control in S. cerevisiae

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14183_sip1_m.pdf
    Size:
    2.394Mb
    Format:
    PDF
    Download
    Author
    Kunkel, Joseph
    Issue Date
    2015
    Keywords
    circuit
    epistasis
    network
    Saccharomyces
    systems
    Genetics
    cerevisiae
    Advisor
    Capaldi, Andrew
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    One of the leading aims of systems biology is the complete delineation of the organization and architecture of signaling networks. Within this aim, characterizing integrated circuits is a particular challenge. Integrated circuits are the sites of information multiplexing, where input from multiple sources are combined into a single output or channel. A number of quantitative methods for analyzing epistasis within integrated pathways have been developed, with limited success. Here I present Expression Component Analysis, a novel approach for determining quantitative epistasis within an integrated signaling circuit, and describe the application of Expression Component Analysis in analyzing an interesting and important integrated signaling circuit in the model eukaryote, S.cerevisiae.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Genetics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.