• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Dynamic Learning and Human Interactions under the Extended Belief-Desire-Intention Framework for Transportation Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14062_sip1_m.pdf
    Size:
    4.038Mb
    Format:
    PDF
    Download
    Author
    Kim, Sojung
    Issue Date
    2015
    Keywords
    Bayesian network
    Belief-Desire-Intention
    Dilemma zone
    Driver's behavior
    En route planning
    Systems & Industrial Engineering
    Agent-based simulation
    Advisor
    Son, Young-Jun
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 17-Jul-2017
    Abstract
    In recent years, multi-agent traffic simulation has been widely used to accurately evaluate the performance of a road network considering individual and dynamic movements of vehicles under a virtual roadway environment. Given initial traffic demands and road conditions, the simulation is executed with multiple iterations and provides users with converged roadway conditions for the performance evaluation. For an accurate traffic simulation model, the driver's learning behavior is one of the major components to be concerned, as it affects road conditions (e.g., traffic flows) at each iteration as well as performance (e.g., accuracy and computational efficiency) of the traffic simulation. The goal of this study is to propose a realistic learning behavior model of drivers concerning their uncertain perception and interactions with other drivers. The proposed learning model is based on the Extended Belief-Desire-Intention (E-BDI) framework and two major decisions arising in the field of transportation (i.e., route planning and decision-making at an intersection). More specifically, the learning behavior is modeled via a dynamic evolution of a Bayesian network (BN) structure. The proposed dynamic learning approach considers three underlying assumptions: 1) the limited memory of a driver, 2) learning with incomplete observations on the road conditions, and 3) non-stationary road conditions. Thus, the dynamic learning approach allows driver agents to understand real-time road conditions and estimate future road conditions based on their past knowledge. In addition, interaction behaviors are also incorporated in the E-BDI framework to address influences of interactions on the driver's learning behavior. In this dissertation work, five major human interactions adopted from a social science literature are considered: 1) accommodation, 2) collaboration, 3) compromise, 4) avoidance, and 5) competition. The first three interaction types help to mimic information exchange behaviors between drivers (e.g., finding a route using a navigation system) while the last two interaction types are relevant with behaviors involving non-information exchange behaviors (e.g., finding a route based on a driver's own experiences). To calibrate the proposed learning behavior model and evaluate its performance in terms of inference accuracy and computational efficiency, drivers' decision data at intersections are collected via a human-in-the-loop experiment involving a driving simulator. Moreover, the proposed model is used to test and demonstrate the impact of five interactions on drivers' learning behavior under an en route planning scenario with real traffic data of Albany, New York, and Phoenix, Arizona. In this dissertation work, two major traffic simulation platforms, AnyLogic® and DynusT®, are used for the demonstration purposes. The experimental results reveal that the proposed model is effective in modeling realistic learning behaviors of drivers in conduction with interactions with other drivers.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems & Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.