• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Novel Technique for Structural Health Assessment in the Presence of Nonlinearity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14075_sip1_m.pdf
    Size:
    4.490Mb
    Format:
    PDF
    Download
    Author
    Al-Hussein, Abdullah Abdulamir
    Issue Date
    2015
    Keywords
    Extended Kalman filter
    Nonlinear system identification
    Structural health assessment
    Unknown input
    Unscented Kalman filter
    Civil Engineering
    Damage detection
    Advisor
    Haldar, Achintya
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 01-Jan-2016
    Abstract
    A novel structural health assessment (SHA) technique is proposed. It is a finite element-based time domain nonlinear system identification technique. The procedure is developed in two stages to incorporate several desirable features and increase its implementation potential. First, a weighted global iteration with an objective function is introduced in the unscented Kalman filter (UKF) procedure in order to obtain stable, convergent, and optimal solution. Furthermore, it also improves the capability of the UKF procedure to identify a large structural system using only a short duration of responses measured at a limited number of dynamic degrees of freedom (DDOFs). The combined procedure is denoted as unscented Kalman filter with weighted global iteration (UKF-WGI). Then, UKF-WGI is integrated with iterative least-squares with unknown input (ILS-UI) in order to increase its implementation potential. The substructure concept is also incorporated in the procedure. The integrated procedure is denoted as unscented Kalman filter with unknown input and weighted global iteration (UKF-UI-WGI). The two most important features of the method are that it does not need information on input excitation and uses only limited number of noise-contaminated response information to identify structural systems. Also, the method is able to identify the defects at the local element level by tracking the changes in the stiffness of the structural elements in the finite element representation. The UKF-UI-WGI procedure is implemented in two stages. In Stage 1, based on the location of input excitation, the substructure is selected. Using only responses at all DDOFs in the substructure, ILS-UI can identify the input excitation time-histories, stiffness parameters of all the elements in the substructure, and two Rayleigh damping coefficients. The outcomes of the first stage are necessary to initiate UKF-WGI. Using the information from Stage 1, the stiffness parameters of all the elements in the structure are identified using UKF-WGI in Stage 2. To demonstrate the effectiveness of the procedure, health assessment of relatively large structural systems is presented. Small and relatively large defects are introduced at different locations in the structure and the capability of the method to detect the health of the structure is examined. The optimum number and location of measured responses are also investigated. It is demonstrated that the method is capable of identifying defect-free and defective states of the structures using minimum information. Furthermore, it can locate defect spot within a defective element accurately. The comparative studies are also conducted between the proposed methods and available methods in the literature. First, it is between the UKF-WGI and extended Kalman filter with weighted global iteration (EKF-WGI) procedure. Then, it is between UKF-UI-WGI and generalized iterative least-squares extended Kalman filter with unknown input (GILS-EKF-UI) procedure, developed earlier by the research team. It is demonstrated that the proposed UKF-based procedures are superior to the EKF-based procedures for SHA.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Civil Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.