• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Orbital Distribution of Minor Planets in the Inner Solar System and their Impact Fluxes on the Earth, the Moon and Mars

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14119_sip1_m.pdf
    Size:
    6.811Mb
    Format:
    PDF
    Download
    Author
    JeongAhn (Chung), Youngmin
    Issue Date
    2015
    Keywords
    Cratering
    Impact Flux
    Mars
    Orbital Dynamics
    Planetary Sciences
    Asteroids
    Advisor
    Malhotra, Renu
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 10-Aug-2016
    Abstract
    The planet crossing asteroids in the inner solar system have strongly chaotic orbits and the distributions of their angular elements (longitude of ascending node, Ω; argument of perihelion, ω; and longitude of perihelion, ϖ) are often regarded as uniform random. In the last decade, the known population of these minor planets has increased by more than a factor of four, providing a sufficiently large dataset for statistical analysis of their distribution. By choosing the observationally complete set of bright objects, we quantified the level of intrinsic non-uniformities of the angular elements for the following dynamical subgroups of Near Earth Objects (NEOs) and Mars Crossing Objects (MCOs): three subgroups of NEOs (Atens, Apollos, and Amors) and two inclination subgroups of MCOs (high and low inclination MCOs, with the boundary at inclination of 15°). Using the methods of angular statistics, we found several statistically significant departures from uniform random angular distributions. We were able to link most of them with the effects of secular planetary perturbations. The distribution of the longitude of ascending node, Ω, for NEOs is slightly enhanced near the ascending node of Jupiter due to the secularly forced inclination vector. Apollos and high inclination MCOs have axial enhancement of ω due to secular dynamics associated with inclination-eccentricity-ω coupling; these enhancements show opposite trends in these two subgroups. The ϖ distributions of Amors and of MCOs are peaked towards the secularly forced eccentricity vector, close to the ϖ value of Jupiter. These non-uniform distributions of the angular elements may affect the asteroidal impact fluxes on the planets. We developed a new approach that accounts for the non-uniform angular elements of planet crossing asteroids to investigate the impact flux and its seasonal variation on the Earth, the Moon, and Mars. The calculation for this study was achieved by generating many clones of the observationally complete subset of bright planet-crossing objects, measuring the Minimum Orbit Intersection Distance (MOID) between the planet and the clones, and making use of the classical formulation of Wetherill (1967) for the collision probability of two objects on independent Keplerian orbits. We developed a novel method to calculate the collision probability for near-tangential encounters; this resolves a singularity in the Wetherill formulation. The impact flux of NEOs on the Earth-Moon system is found to be not affected significantly by the non-uniform distribution of angular elements of NEOs. The impact flux on Mars, however, is found to be reduced by a factor of about 2 compared to the flux that would obtain from the assumption of uniform random distributions of the angular elements of MCOs. Moreover, the impact flux on Mars has a strong seasonal variation, with a peak when the planet is near aphelion. We found that the amplitude of this seasonal variation is a factor of 4-5 times smaller compared to what would be obtained with a uniform random distribution of the angular elements of MCOs. We calculate that the aphelion impact flux on Mars is about three times larger than its perihelion impact flux. We also calculate the current Mars/Moon impact flux ratio as 2.9-5.0 for kilometer size projectiles.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.