Progressive Alterations in Microstructural Organization and Biomechanical Response in the ApoE Mouse Model of Aneurysm and the Underlying Changes in Biochemistry
Author
Haskett, DarrenIssue Date
2015Advisor
Vande Geest, Jonathan P.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Abdominal Aortic Aneurysm (AAA) is a complex disease that leads to a localized dilation of the infrarenal aorta that develops over years. Longitudinal information in humans has been difficult to obtain for this disease, therefore mouse models have become increasingly used to study the development of AAAs. The objective of this study was to determine any changes that occur in the biomechanical response and fiber microstructure in the apolipoprotein E difficient (ApoE-/-) angiotensin II (AngII) infused mouse model of aneurysm during disease progression, as well as determine some of the underlying changes in biochemistry, and demonstrate a novel method of reducing any pathogenic protease activity. Using a Microbiaxial Opto-Mechanical Device (MOD), ex vivo studies included adult aortas of ApoE-/- AngII infused mice excised and tested for mechanical response simultaneously imaged using two-photon microscopy to assess the microstructure at multiple time points. In vitro and ex vivo studies have shown changes in protease concentrations with the use of FRET based proteolytic beacons able to provide a non-destructive method to quantify protease activity measured against mechanical and microstructural changes. In vitro studies have demonstrated protease activity can be reduced using a molecule providing a positive feedback mechanism for protease inhibition and possibly provide a reduction in aneurysm progression.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeBiomedical Engineering