• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Membrane Distillation: Parametric Studies and Numerical Simulations for Hollow Fiber and Flat Sheet Membranes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14206_sip1_m.pdf
    Size:
    4.405Mb
    Format:
    PDF
    Download
    Author
    Karanikola, Vasiliki
    Issue Date
    2015
    Keywords
    Flat Sheet
    Hollow Fiber
    Membrane Distillation
    Numerical Simulations
    Sweeping Gas
    Environmental Engineering
    Desalination
    Advisor
    Arnold, Robert G.
    Ela, Wendell P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 18-Aug-2017
    Abstract
    Water scarcity is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest. Water of impaired quality could be water of high salinity such as brackish groundwater. Traditionally, reverse osmosis (RO) would be chosen to desalinate the brackish groundwater, since RO costs are competitive with those of thermal desalination, even for seawater applications. However, both conventional thermal distillation and RO are energy intensive, complex processes that discourage decentralized or rural implementation. In addition, both technologies require enhanced expertise for operation and maintenance, and are susceptible to scaling and fouling unless extensive feed pretreatment is employed. Membrane distillation (MD), driven by vapor pressure gradients, can potentially overcome many of these drawbacks. MD can operate using low-grade, sub-boiling temperature heat sources. When it is driven by solar energy it does not require highly concentrating collection devices, non-aqueous working fluids, or complex temperature control systems, nor does it require extensive operational expertise. Membrane Distillation (MD) applications, background and modeling efforts are discussed in the first part of this dissertation. Two main studies are presented in this document: Firstly, Sweeping Gas Membrane Distillation (SGMD) through a hollow fiber membrane was studied both experimentally and modeled mathematically to describe performance of SGMD and extend results to predict membrane module efficiency and secondly, SGMD through a flat sheet MD module to study the effect of membrane characteristics in combination with operational variables. A final study was conducted to examine the effect of mesh spacer insertion in flat sheet membrane module on the permeate water production.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Environmental Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.