Show simple item record

dc.contributor.advisorCole-Rhodes, Arleneen_US
dc.contributor.advisorDean, Richarden_US
dc.contributor.advisorMoazzami, Farzaden_US
dc.contributor.authorAssegu, Wannaw
dc.contributor.authorFofanah, Ibrahim
dc.date.accessioned2015-11-05T16:10:46Zen
dc.date.available2015-11-05T16:10:46Zen
dc.date.issued2012-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/581818en
dc.descriptionITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, Californiaen_US
dc.description.abstractThe main objectives of Integrated Network Enhanced Telemetry (iNET) are increased data rate and improved spectral efficiency. In this paper we propose the transmission scheme for the physical layer to be coded Quadrature Amplitude Modulation-Orthogonal Frequency Division Multiplexing (QAM OFDM) which enables high data rates and spectrum efficiency. However in high mobility scenarios, the channel is time-varying the receiver design is more challenging. In this paper pilot-assisted channel estimation is used at the receiver, with turbo coding to enhance the performance; while the effect of inter symbol interference (ISI) is mitigated by cyclic prefix. The focus of this paper is to evaluate the performance of OFDM with QAM over an aeronautical channel. The M-QAM with OFDM provides a higher data rate than QPSK hence it is chosen in this paper. The implementation is done using Inverse Fast Fourier Transform (IFFT) and the Fast Fourier Transform (FFT). This paper considers how the performance of Coded QAM OFDM can be enhanced using equalization to compensate for inter symbol interference, and using turbo coding for error correction.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen_US
dc.subjectOFDMen
dc.subjectCPen
dc.subjectTurbo Codingen
dc.subjectEqualizationen
dc.subjectQAMen
dc.titlePerformance of Turbo Coded OFDM Modulation over an Aeronautical Channelen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentMorgan State Universityen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en_US
refterms.dateFOA2018-04-26T16:39:25Z
html.description.abstractThe main objectives of Integrated Network Enhanced Telemetry (iNET) are increased data rate and improved spectral efficiency. In this paper we propose the transmission scheme for the physical layer to be coded Quadrature Amplitude Modulation-Orthogonal Frequency Division Multiplexing (QAM OFDM) which enables high data rates and spectrum efficiency. However in high mobility scenarios, the channel is time-varying the receiver design is more challenging. In this paper pilot-assisted channel estimation is used at the receiver, with turbo coding to enhance the performance; while the effect of inter symbol interference (ISI) is mitigated by cyclic prefix. The focus of this paper is to evaluate the performance of OFDM with QAM over an aeronautical channel. The M-QAM with OFDM provides a higher data rate than QPSK hence it is chosen in this paper. The implementation is done using Inverse Fast Fourier Transform (IFFT) and the Fast Fourier Transform (FFT). This paper considers how the performance of Coded QAM OFDM can be enhanced using equalization to compensate for inter symbol interference, and using turbo coding for error correction.


Files in this item

Thumbnail
Name:
ITC_2012_12-19-06.pdf
Size:
500.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record