• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Crosstalk in Stereoscopic LCD 3-D Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14292_sip1_m.pdf
    Size:
    8.464Mb
    Format:
    PDF
    Download
    Author
    Feng, Hsin-Chang
    Issue Date
    2015
    Keywords
    Crosstalk Compensation
    Stereoscopic 3D
    Visually Lossless Compression
    Electrical & Computer Engineering
    Crosstalk
    Advisor
    Bilgin, Ali
    Marcellin, Michael W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Stereoscopic 3-D has received considerable attention over the last few decades. Since a stereoscopic 3-D pair includes two 2-D images together, the amount of data for an uncompressed stereo image is double compared to that for an uncompressed 2-D image. Thus efficient compression techniques are of paramount importance. However, crosstalk effect is an inherent perceivable problem in current 3-D display technologies. It can lead not only to degradation in the perceived quality of 3-D images, but also to discomfort in some individuals. Correspondingly, when crosstalk occurs, the compression artifacts in a compressed stereo pair can be perceived, despite the fact that such artifacts are imperceptible in individual left and right images. This dissertation proposes a methodology for visually lossless compression of monochrome stereoscopic 3-D images in which crosstalk effect is carefully considered. In the proposed methodology for visually lossless compression of monochrome stereoscopic 3-D images, visibility thresholds are measured for quantization distortion in JPEG2000 to conceal perceivable compression artifacts. These thresholds are found to be functions of not only spatial frequency, but also of wavelet coefficient variance, as well as the gray level in both the left and right images. In order to avoid a daunting number of measurements of visibility thresholds during subjective experiments, a model for visibility thresholds is developed. The left image and right image of a stereo pair are then compressed jointly using the visibility thresholds obtained from the proposed model to ensure that quantization errors in each image are imperceptible to both eyes. This methodology is then demonstrated via a 3-D stereoscopic liquid crystal display (LCD) system with an associated viewing condition. The resulting images are visually lossless when displayed individually as 2-D images, and also when displayed in stereoscopic 3-D mode. In order to have better perceptual quality of stereoscopic 3-D images, hardware based techniques have been used to reduce crosstalk in 3-D stereoscopic display systems. However, crosstalk is still readily apparent in some 3-D viewing systems. To reduce crosstalk remains after hardware crosstalk compensation, a methodology for crosstalk compensation accomplished via image processing is provided in this dissertation. This methodology focuses on crosstalk compensation of 3-D stereoscopic LCD systems in which active shutter glasses are employed. Subjective experiments indicate that crosstalk is a function of not only the pixel intensity in both the left and right channels, but also of spatial location. Accordingly, look-up tables (LUTs) are developed for spatially-adaptive crosstalk compensation. For a given combination of gray levels in the left and right channels at a specific spatial location, the original pixel values are replaced by values contained in the LUTs. The crosstalk in the resulting stereo pair is significantly reduced, resulting in a significant increase in perceptual image quality.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.