• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Multi-Resolution Foveated Laparoscope

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14314_sip1_m.pdf
    Size:
    12.18Mb
    Format:
    PDF
    Download
    Author
    Qin, Yi
    Issue Date
    2015
    Keywords
    Endoscopy
    Foveated imaging
    Laparoscopy
    Optical system design
    Zoom lens
    Optical Sciences
    Biomedical imaging
    Advisor
    Hua, Hong
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Laparoscopic surgery or minimally invasive surgery has great advantages compared with the conventional open surgery, such as reduced pain, shorter recovery time and lower infection rate. It has become a standard clinical procedure for cholecystectomy, appendectomy and splenectomy. The state-of-the-art laparoscopic technologies suffer from several significant limitations, one of which is the tradeoff of the limited instantaneous field of view (FOV) for high spatial resolution versus the wide FOV for situational awareness but with diminished spatial resolution. Standard laparoscopes lack the ability to acquire both wide-angle and high-resolution images simultaneously through a single scope. During the surgery, a trained assistant is required to manipulate the laparoscope. The practice of frequently maneuvering the laparoscope by a trained assistant can lead to poor or awkward ergonomic scenarios. This type of ergonomic conflicts imposes inherent challenges to laparoscopic procedures, and it is further aggravated with the introduction of single port access (SPA) techniques to laparoscopic surgery. SPA uses one combined surgical port for all instruments instead of using multiple ports in the abdominal wall. The grouping of ports raises a number of challenges, including the tunnel vision due to the in-line arrangement of instruments, poor triangulation of instruments, and the instrument collision due to the close proximity to other surgical devices. A multi-resolution foveated laparoscope (MRFL) was proposed to address those limitations of the current laparoscopic surgery. The MRFL is able to simultaneously capture a wide-angle view for situational awareness and a high-resolution zoomed-in view for fine details. The high-resolution view can be scanned and registered anywhere within the wide-angle view, enabled by a 2D optical scanning mechanism. In addition, the high-resolution probe has optical zoom and autofocus capabilities, so that the field coverage can be dynamically varied while keep the same focus distance as the wide-angle probe. Moreover, the MRFL has a large working distance compared with the standard laparoscopes, the wide-angle probe has more than 8x field coverage than a standard laparoscope. On the other hand, the high-resolution probe has 3x spatial resolution than a standard one. These versatile capabilities are anticipated to have significant impacts on the diagnostic, clinical and technical aspects of minimally invasive surgery. In this dissertation, the development of the multi-resolution foveated laparoscope was discussed in detail. Starting from the refinement of the 1st order specifications, system configurations, and initial prototype demonstration, a customized dual-view MRFL system with fixed optical magnifications was developed and demonstrated. After the in-vivo test of the first generation prototype of the MRFL, further improvement was made on the high-resolution probe by adding an optical zoom and auto-focusing capability. The optical design, implementation and experimental validation of the MRFL prototypes were presented and discussed in detail.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.