• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Chemical Tools for the Selective Control of Proteins: Protein Kinases and Acetyl Transferases

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14180_sip1_m.pdf
    Size:
    23.77Mb
    Format:
    PDF
    Download
    Author
    Restituyo Rosario, Elizabeth
    Issue Date
    2015
    Keywords
    Chemistry
    Molecular Biology
    Biochemistry
    Bio Organic
    Advisor
    Ghosh, Indraneel
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 13-Aug-2017
    Abstract
    Post-translational modifications (PTMs) of proteins are now known to increase the complexity of biological signaling networks. The ability to selectively control the activity of individual proteins and enzymes involved in PTMs enables studies of biological systems and in designing therapeutic agents. The phosphorylation of serine, threonine, and tyrosine catalyzed by protein kinases play an important role in signaling and when deregulated are involved in different types of cancer amongst other diseases. Therefore, selective regulation of kinase activity by inhibition could provide a means to understand signaling and also aid in developing therapies. The design of specific kinase inhibitors is challenging because most inhibitors target the common ATP-binding site, leading to several off-target hits with adverse effects. With this in mind, a fragment-based bivalent strategy was developed to potentially increase affinity and selectivity. Our approach seeks to target the ATP-binding site with a small molecule while simultaneously targeting any available site on the kinase with a cyclic peptide that potentially increases selectivity and affinity. The bivalent approach has produced effective and selective inhibitors for cAMP-dependent protein kinase (PKA). Herein, we extended this approach to Aurora kinase (Aurora A), RSK1 and MSK1. Using our optimized selection conditions, we have successfully selected several cyclic peptide ligands to later generate bivalent ligands for these kinases. This strategy may prove a robust method to discover new allosteric sites on kinases as well as other proteins, furthermore it also has the potential to provide insight towards the design of new ATP targeted approaches. A second area of research focuses on PTMs involved in the acetylation of lysine residues by enzymes dubbed histone acetyl transferases (HATs) or lysine acetyl transferases (KATs). Recent studies have shown that a large fraction of the proteome may be modifies by KATs but it is challenging to develop uniquely selective inhibitors as the KATs like Kinases have similar active sites. Towards the goal of developing a method to control a single KAT in the presence of other KATs, we designed ligand-gated split-proteins based on a sequence dissimilarity based approach. Potential fragmentation sites were identified by insertion of a 25-residue loop insertion. Successful loop insertion mutants provided guidance for the dissection of KATs into fragments tethered to FKBP and FRB that cannot spontaneously assemble, but that do upon the addition of a ligand, rapamycin to generate catalytically active. The method was successfully applied to design the very first split-KAT, GCN5,which only showed activity in the presence of an added small molecule. The method was shown to be potentially general by application to a second KAT, PCAF. The above studies provide potentially new approaches for selectively targeting and studying PTMs catalyzed by kinases and lysine acetyl transferase.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Biochemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.