• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    AdaptiSPECT: a Preclinical Imaging System

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14278_sip1_m.pdf
    Size:
    67.84Mb
    Format:
    PDF
    Download
    Author
    Chaix, Cécile
    Issue Date
    2015
    Keywords
    Optical Sciences
    Advisor
    Furenlid, Lars R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release 01-Jun-2016
    Abstract
    This dissertation addresses the design, development, calibration and performance evaluation of a pre-clinical imaging system called AdaptiSPECT. Single-Photon Emission Computed Tomography (SPECT) systems are powerful tools for multiple applications in small-animal research, ranging from drug discovery to fundamental biology. Traditionally, pinhole SPECT systems are designed with fixed imaging characteristics in terms of sensitivity, resolution and size of the field of view, that are dictated by the hardware configuration of the system. The SPECT system described in this dissertation can change its hardware configuration in response to the subject data it is acquiring in order to improve the imaging performance. We employed 16 modular gamma-ray detectors, each of which consists of a NaI:Tl scintillation crystal, a fused silica lightguide, and an array of 9 PMTs. The camera is designed to work with maximum-likelihood position estimation methods. These detectors are arranged into 2 rings of 8 detectors around an adjustable pinhole aperture. The aperture itself comprises three cylinders of different diameters, each with pinholes of different diameters. The three aperture cylinders are stacked together along the imager axis, and selection of the appropriate ring of pinholes is carried out by translating the entire aperture assembly. In addition, some sections of the aperture are fitted with shutters to open or close additional pinholes that increase sensitivity. We reviewed the method used to calibrate AdaptiSPECT, and proposed a new interpolation scheme specific to adaptive SPECT imaging systems where the detectors can move to multiple locations, that yields system matrices for any configuration employed during adaptive imaging. We evaluated the performances of AdaptiSPECT for various configurations. The magnification of the system ranges from 1.2 to 11.1. The corresponding resolution ranges from 3.2 mm to 0.6 mm, and the corresponding transaxial field-of-view ranges from 84 mm to 10 mm. The sensitivity of the system varies from 220 cps/MBq to 340 cps/MBq for various configurations. Imaging of a mouse injected with a bone radiotracer revealed the finer structures that can be acquired at higher magnifications, and illustrated the ability to conveniently image with a variety of magnifications during the same study. In summary, we have brought the concept of an adaptive SPECT imaging system as it was originally described by Barrett et al. in 2008 to life. We have engineered a system that can switch configurations with speed, precision, and repeatability suitable to carry out adaptive imaging studies on small animals, thus opening the door to a new research and medical imaging paradigm in which the imager hardware is adjusted on the fly to maximize task-performance for a specific patient, not, as currently, an ensemble of patients.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.