Show simple item record

dc.contributor.advisorZhang, Jinhongen
dc.contributor.authorFeng, Qingming
dc.creatorFeng, Qingmingen
dc.date.accessioned2016-01-26T18:29:00Zen
dc.date.available2016-01-26T18:29:00Zen
dc.date.issued2015en
dc.identifier.urihttp://hdl.handle.net/10150/594926en
dc.description.abstractGeopolymerization has been considered as a new technology to replace the ordinary Portland cement in construction industry. It provides an option to manage the industry waste and byproducts like fly ash, mine tailings. At the same time, the CO₂ emissions can be reduced about 80% compared to that of ordinary Portland cement. The present research includes three main parts. First part is applying mine tailings as construction materials using geopolymerization method. The study is focused on efficiently activating mine tailings, reducing alkali consumption, decreasing curing time and improving compressive strength. We investigate the activation temperature effects, the impacts of additives and effects of forming pressures. The results show that a 40 MPa unconfined compressive strength (UCS) can be achieved with the geopolymerization samples after mine tailings are activated by sodium hydroxide at 170°C for 1 hour with the addition of calcium hydroxide and alkali dissolved aluminium oxide, further compressed with a 10 MPa forming pressure and finally cured at 90°C for 3 days. To elucidate the mechanism for the contribution of additives to geopolymerization, microscopic and spectroscopic techniques including scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy are used to investigate the micro/nanostructure and the elemental and phase composition of geopolymerization specimens. The stress-strain behavior was also characterized. The results shows that the mechanical behavior is similar with that of concrete and the dynamic modulus is 22 GPa, which is comparable with that of concrete. The Young's modulus of geopolymer product was also calculated and the value is in the range of 2.9 to 9.3 GPa. The findings of the present work provide a novel method for the geopolymerization of mine tailings as construction materials. Second section is applying fly ash as a high strength water-resistant construction material. Through the present investigation, a procedure has been studied. The experiment results indicate that the concentration of NaOH, water content, and curing condition can significantly affect the mechanical property of geopolymer matrix. At the same time, the chemical composition, especially the Si/Al ratio and calcium content, is also an important factor during geopolymerization. XRD results show that the amorphous feature can be observed for both high and low calcium fly ash. It is the key of the success of geopolymerizaton due to its high reactivity. XRD, FTIR and SEM tests were performed to study how experiment conditions and the properties of fly ash affect geopolymerization. The obtained compressive strength of the geopolymerization product can reach above 100 MPa. The stress-strain behavior was also characterized. The results shows that the dynamic modulus is 36.5 GPa. The product obtained from the present work shows very high water resistance without losing any compressive strength even after a one month soaking time. Third part is applying the mixture of class C fly ash and mine tailings as construction materials. Through the present investigation, a protocol has been set up. The experiment results of the present work also help set up the working conditions such as activation temperature and time, the concentration of NaOH, the addition of Ca(OH)₂, forming pressure, mine tailing to class C fly ash weight ratio, curing temperature and curing time. To elucidate the mechanism for the contribution of additives to geopolymerization, microscopic and spectroscopic techniques such as SEM/EDX, X-ray diffraction and FTIR spectroscopy were used to investigate the micro/nanostructure and the elemental and phase composition of geopolymerization composite. The obtained compressive strength of the geopolymerization product can reach above 60 MPa. The stress-strain behavior of the geopolymer matrix of the mixture of mine tailing and fly ash were also characterized and the results show that the mechanical behavior is similar to that of concrete with a 24 GPa dynamic modulus. The Young's modulus of geopolymer product was also calculated and the value is in the range of 4.0 to 13.5 GPa. The findings of the present work provide a novel method for the geopolymerization of the mixture of mine tailings and class C fly ash as construction materials, such as bricks for construction and road pavement.
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.subjectDurabilityen
dc.subjectFly ashen
dc.subjectGeopolymerizationen
dc.subjectMine tailingen
dc.subjectYoung's modulusen
dc.subjectMining Geological & Geophysical Engineeringen
dc.subjectCompressive strengthen
dc.titleApplying Mine Tailing and Fly Ash as Construction Materials for a Sustainable Developmenten_US
dc.typetexten
dc.typeElectronic Dissertationen
thesis.degree.grantorUniversity of Arizonaen
thesis.degree.leveldoctoralen
dc.contributor.committeememberZhang, Jinhongen
dc.contributor.committeememberKemeny, Johnen
dc.contributor.committeememberLee, Jaeheonen
dc.contributor.committeememberTenorio, Victoren
dc.description.releaseRelease 18-Dec-2017en
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineMining Geological & Geophysical Engineeringen
thesis.degree.namePh.D.en
refterms.dateFOA2017-12-18T00:00:00Z
html.description.abstractGeopolymerization has been considered as a new technology to replace the ordinary Portland cement in construction industry. It provides an option to manage the industry waste and byproducts like fly ash, mine tailings. At the same time, the CO₂ emissions can be reduced about 80% compared to that of ordinary Portland cement. The present research includes three main parts. First part is applying mine tailings as construction materials using geopolymerization method. The study is focused on efficiently activating mine tailings, reducing alkali consumption, decreasing curing time and improving compressive strength. We investigate the activation temperature effects, the impacts of additives and effects of forming pressures. The results show that a 40 MPa unconfined compressive strength (UCS) can be achieved with the geopolymerization samples after mine tailings are activated by sodium hydroxide at 170°C for 1 hour with the addition of calcium hydroxide and alkali dissolved aluminium oxide, further compressed with a 10 MPa forming pressure and finally cured at 90°C for 3 days. To elucidate the mechanism for the contribution of additives to geopolymerization, microscopic and spectroscopic techniques including scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy are used to investigate the micro/nanostructure and the elemental and phase composition of geopolymerization specimens. The stress-strain behavior was also characterized. The results shows that the mechanical behavior is similar with that of concrete and the dynamic modulus is 22 GPa, which is comparable with that of concrete. The Young's modulus of geopolymer product was also calculated and the value is in the range of 2.9 to 9.3 GPa. The findings of the present work provide a novel method for the geopolymerization of mine tailings as construction materials. Second section is applying fly ash as a high strength water-resistant construction material. Through the present investigation, a procedure has been studied. The experiment results indicate that the concentration of NaOH, water content, and curing condition can significantly affect the mechanical property of geopolymer matrix. At the same time, the chemical composition, especially the Si/Al ratio and calcium content, is also an important factor during geopolymerization. XRD results show that the amorphous feature can be observed for both high and low calcium fly ash. It is the key of the success of geopolymerizaton due to its high reactivity. XRD, FTIR and SEM tests were performed to study how experiment conditions and the properties of fly ash affect geopolymerization. The obtained compressive strength of the geopolymerization product can reach above 100 MPa. The stress-strain behavior was also characterized. The results shows that the dynamic modulus is 36.5 GPa. The product obtained from the present work shows very high water resistance without losing any compressive strength even after a one month soaking time. Third part is applying the mixture of class C fly ash and mine tailings as construction materials. Through the present investigation, a protocol has been set up. The experiment results of the present work also help set up the working conditions such as activation temperature and time, the concentration of NaOH, the addition of Ca(OH)₂, forming pressure, mine tailing to class C fly ash weight ratio, curing temperature and curing time. To elucidate the mechanism for the contribution of additives to geopolymerization, microscopic and spectroscopic techniques such as SEM/EDX, X-ray diffraction and FTIR spectroscopy were used to investigate the micro/nanostructure and the elemental and phase composition of geopolymerization composite. The obtained compressive strength of the geopolymerization product can reach above 60 MPa. The stress-strain behavior of the geopolymer matrix of the mixture of mine tailing and fly ash were also characterized and the results show that the mechanical behavior is similar to that of concrete with a 24 GPa dynamic modulus. The Young's modulus of geopolymer product was also calculated and the value is in the range of 4.0 to 13.5 GPa. The findings of the present work provide a novel method for the geopolymerization of the mixture of mine tailings and class C fly ash as construction materials, such as bricks for construction and road pavement.


Files in this item

Thumbnail
Name:
azu_etd_14288_sip1_m.pdf
Size:
7.445Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record