• Discovery of non-random spatial distribution of impacts in the Stardust cometary collector

      Westphal, A. J.; Bastien, R. K.; Borg, J.; Bridges, J.; Brownlee, D. E.; Burchell, M. J.; Cheng, A. F.; Clark, B. C.; Djouadi, Z.; Floss, C.; et al. (The Meteoritical Society, 2008-01-01)
      We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than ~10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluate several hypotheses that could explain the observations. No hypothesis is consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.
    • Nebular mixing constrained by the Stardust samples

      Ogliore, R. C.; Westphal, A. J.; Gainsforth, Z.; Butterworth, A. L.; Fakra, S. C.; Marcus, M. A. (The Meteoritical Society, 2009-01-01)
      Using X-ray microprobe analysis of samples from comet Wild 2 returned by the Stardust mission, we determine that the crystalline Fe-bearing silicate fraction in this Jupiter-family comet is greater than 0.5. Assuming this mixture is a composite of crystalline inner solar system material and amorphous cold molecular cloud material, we deduce that more than half of Wild 2 has been processed in the inner solar system. Several models exist that explain the presence of crystalline materials in comets. We explore some of these models in light of our results.