• Modeling damage and deformation in impact simulations

      Collins, G. S.; Melosh, H. J.; Ivanov, B. A. (The Meteoritical Society, 2004-01-01)
      Numerical modeling is a powerful tool for investigating the formation of large impact craters but is one that must be validated with observational evidence. Quantitative analysis of damage and deformation in the target surrounding an impact event provides a promising means of validation for numerical models of terrestrial impact craters, particularly in cases where the final pristine crater morphology is ambiguous or unknown. In this paper, we discuss the aspects of the behavior of brittle materials important for the accurate simulation of damage and deformation surrounding an impact event and the care required to interpret the results. We demonstrate this with an example simulation of an impact into a terrestrial, granite target that produces a 10 km-diameter transient crater. The results of the simulation are shown in terms of damage (a scalar quantity that reflects the totality of fragmentation) and plastic strain, both total plastic strain (the accumulated amount of permanent shear deformation, regardless of the sense of shear) and net plastic strain (the amount of permanent shear deformation where the sense of shear is accounted for). Damage and plastic strain are both greatest close to the impact site and decline with radial distance. However, the reversal in flow patterns from the downward and outward excavation flow to the inward and upward collapse flow implies that net plastic strains may be significantly lower than total plastic strains. Plastic strain in brittle rocks is very heterogeneous; however, continuum modeling requires that the deformation of the target during an impact event be described in terms of an average strain that applies over a large volume of rock (large compared to the spacing between individual zones of sliding). This paper demonstrates that model predictions of smooth average strain are entirely consistent with an actual strain concentrated along very narrow zones. Furthermore, we suggest that model predictions of total accumulated strain should correlate with observable variations in bulk density and seismic velocity.
    • Origin and emplacement of the impact formations of Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling

      Stöffler, D.; Artemieva, N. A.; Ivanov, B. A.; Hecht, L.; Kenkmann, T. (The Meteoritical Society, 2004-01-01)
      We present and interpret results of petrographic, mineralogical, and chemical analyses of the 1511 m deep ICDP Yaxcopoil-1 (Yax-1) drill core, with special emphasis on the impactite units. Using numerical model calculations of the formation, excavation, and dynamic modification of the Chicxulub crater, constrained by laboratory data, a model of the origin and emplacement of the impact formations of Yax-1 and of the impact structure as a whole is derived. The lower part of Yax-1 is formed by displaced Cretaceous target rocks (610 m thick), while the upper part comprises six suevite-type allochthonous breccia units (100 m thick). From the texture and composition of these lithological units and from numerical model calculations, we were able to link the seven distinct impact-induced units of Yax-1 to the corresponding successive phases of the crater formation and modification, which are as follows: 1) transient cavity formation including displacement and deposition of Cretaceous megablocks; 2) ground surging and mixing of impact melt and lithic clasts at the base of the ejecta curtain and deposition of the lower suevite right after the formation of the transient cavity; 3) deposition of a thin veneer of melt on top of the lower suevite and lateral transport and brecciation of this melt toward the end of the collapse of the transient cavity (brecciated impact melt rock); 4) collapse of the ejecta plume and deposition of fall-back material from the lower part of the ejecta plume to form the middle suevite near the end of the dynamic crater modification; 5) continued collapse of the ejecta plume and deposition of the upper suevite; 6) late phase of the collapse and deposition of the lower sorted suevite after interaction with the inward flowing atmosphere; 7) final phase of fall-back from the highest part of the ejecta plume and settling of melt and solid particles through the reestablished atmosphere to form the upper sorted suevite; and 8) return of the ocean into the crater after some time and minor reworking of the uppermost suevite under aquatic conditions. Our results are compatible with: a) 180 km and 100 km for the diameters of the final crater and the transient cavity of Chicxulub, respectively, as previously proposed by several authors, and b) the interpretation of Chicxulub as a peak-ring impact basin that is at the transition to a multi-ring basin.