• A Beam Profile Monitor for Rare Isotopes in Accelerator Mass Spectrometry: Preliminary Measurements

      Taccetti, F.; Carraresi, L.; Fedi, M. E.; Manetti, M.; Mariani, P.; Tobia, G.; Mandò, P. A. (Department of Geosciences, The University of Arizona, 2010-01-01)
      In accelerator systems, beam lines are generally equipped with diagnostic elements, such as Faraday cups and beam profile monitors (BPM), to optimize beam transport. These diagnostic elements, or at least commercial ones, are designed to only work with continuous beams, and their typical maximum sensitivity is about few tens of pA. Thus, in the case of diagnosis of rare isotope beams in accelerator mass spectrometry (AMS), Faraday cups and BPMs are not suitable on the high-energy side of the tandem accelerator, after energy-mass-charge analysis. For example, in 14C AMS, even for a modern sample, the expected counting rate is a few tens of Hz; in these conditions, a commercial BPM cannot be used. On the other hand, checking the shape and the position of the rare isotope beam hitting the detector can be important in order to better identify signals in the detector itself, thus also helping in reducing the measurement background. This paper presents a prototype BPM especially designed for low-intensity beams. The BPM is based on a multiwire proportional chamber characterized by 2 grids of anode wires, oriented perpendicular to each other in order to measure both the x and the y coordinates of the particle impact point. Details about the design and the electronics of the device are given, and the first test measurements are discussed.
    • Radiocarbon Dating in Late-Roman and Medieval Contexts: An Archaeological Excavation in the Center of Florence, Italy

      Fedi, M. E.; Arnoldus-Huyzendveld, A.; Cartocci, A.; Manetti, M.; Taccetti, F. (Department of Geosciences, The University of Arizona, 2007-01-01)
      A series of samples for radiocarbon dating were collected in 2005 from the Biblioteca Magliabechiana archaeological excavation area in the center of Florence, Italy, in a project directed by the Dipartimento di Archeologia e Storia delle Arti of the University of Siena, in cooperation with the Soprintendenza per i Beni Architettonici e per il Paesaggio per le province di Firenze e Prato. This area is located near the Uffizi Galleries, close to the Roman town, the Arno River and one of its former tributaries. The area is peculiar for the Florentine urban context because it was free from urban development until the 12th century AD. The exposed stratigraphy showed the presence of several layers composed of natural sediments, partly the result of historical floods. Here, we report a series of 14C measurements on charcoal and seed samples collected on this excavation. 14C dating has been performed in the LABEC laboratory in Florence, on the accelerator mass spectrometry (AMS) beam line of the AMS-IBA 3MV Tandetron accelerator. We also had the opportunity to compare the 14C dates obtained with several series of samples previously collected in nearby archaeological areas. Results were consistent with the data obtained previously and, moreover, offer interesting new aspects to the interpretation of the archaeological findings.
    • Radiocarbon Reveals the Age of Two Precious Tombs in the Etruscan Site of Populonia-Baratti (Tuscany)

      Scirè Calabrisotto, C.; Fedi, M. E.; Taccetti, F.; Benvenuti, M.; Chiarantini, L.; Quaglia, L. (Department of Geosciences, The University of Arizona, 2009-01-01)
      The archaeological site of Populonia-Baratti, in the southern part of Tuscany (Italy), was one of the most important centers in ancient Etruria, as seen in the evidence of metallurgical activities carried out at that time. During recent archaeological excavations (2005) in the ancient industrial area of Populonia, along the Baratti beach, 2 interesting tombs were found. The 2 graves were unusually located in an area dedicated to metallurgical activity and showed a particular structure of the burial chambers and an extreme richness in the grave goods. The unique character of the 2 tombs prompted many questions: who were these 2 individuals (a woman wearing many jewels and a tall, vigorous man) and when did they die? In order to obtain useful information about the chronology of the 2 tombs, accelerator mass spectrometry (AMS) radiocarbon analyses were performed on samples taken from the ribs of the 2 skeletons. Measured 14C ages were converted to calibrated ages using additional information derived from stable isotope ratios measured in the extracted collagen. Actually, the 13C data provided useful hints about the diet of the 2 individuals, thus allowing us to estimate the percentage of marine food consumed (about 30%) and exploit a combined marine-terrestrial calibration curve. As a result, the age of the 2 individuals can be dated to the 2nd century AD, during Roman times, which is in good agreement with the information obtained from archaeological, anthropological, and stylistic studies of the 2 tombs.
    • The Artemidorus Papyrus: Solving an Ancient Puzzle with Radiocarbon and Ion Beam Analysis Measurements

      Fedi, M. E.; Carraresi, L.; Grassi, N.; Migliori, A.; Taccetti, F.; Terrasi, F.; Mandò, P. A. (Department of Geosciences, The University of Arizona, 2010-01-01)
      Ancient papyrus manuscripts are one of the most fascinating sources for reconstructing not only ancient life habits but also past literature. Recently, an amazing document has come to the fore due to the heated debates it raised: the so-called Artemidorus papyrus. It is a very long scroll (about 2.5 m) composed of several fragments of different sizes, with inscriptions and drawings on both sides. On the recto of the document, a text about geography and some drawings of heads, feet, and hands are present, while on the verso there are many sketches of animals, both real and fantastic. Its importance in classical studies comes from the fact that some scholars claim that it is the first known transcription of a relatively large fragment by the Greek geographer Artemidorus. However, other scholars think that the papyrus is a fake, drawn in the 19th century AD by a well-known forger. In order to overcome all possible ambiguities, the papyrus has been studied not only on the basis of historical and paleographic criteria but also by scientific techniques. We have contributed to the knowledge about the papyrus by radiocarbon dating the document and by analyzing the composition of the ink using ion beam analysis (IBA). Results are compatible with the scroll being an ancient manuscript: accelerator mass spectrometry (AMS) 14C measurements have dated the papyrus to a period between the 1st century BC and 1st century AD, while IBA measurements have pointed out the use of an organic (carbon-based) ink, which was typical of ancient Roman and Greek times. Details of the measurements are presented to emphasize the importance of combining AMS and IBA results.