Show simple item record

dc.contributor.authorAraujo, Maria S.
dc.contributor.authorMoodie, Myron L.
dc.contributor.authorAbbott, Ben A.
dc.contributor.authorGrace, Thomas B.
dc.date.accessioned2016-02-04T19:01:44Zen
dc.date.available2016-02-04T19:01:44Zen
dc.date.issued2011-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/595613en
dc.descriptionITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevadaen_US
dc.description.abstractOn the surface, network-based telemetry systems would appear to be simple, stateless, information collecting entities. Unfortunately, the reality of networking technologies brings a hierarchy of control loops into the system setup. At the top level, the command and status collection data loop that users manipulate the system with is a feedback loop. The commands themselves are transmitted across the network through competing streams of data, which are guided and controlled by Transmission Control Protocol (TCP) mechanisms. TCP mechanisms themselves have control loops in order to avoid congestion, provide reliability, and generally optimize flow. These TCP streams flowing across a network fabric compete at choke points, such as network switches, routers, and wireless telemetry links - all of which are also guided by control loops. This paper discusses the hierarchy of control loops present in a TmNS, provides an analysis of how these loops interact, and describes key points to be considered for telemetry systems.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen_US
dc.subjectiNETen
dc.subjectControl Systemsen
dc.subjectTCPen
dc.subjectThroughputen
dc.subjectLatencyen
dc.titleControl System Analysis of a Telemetry Network System (TmNS)en_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentSouthwest Research Instituteen
dc.contributor.departmentNaval Air Systems Command (NAVAIR)en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-07-02T03:20:34Z
html.description.abstractOn the surface, network-based telemetry systems would appear to be simple, stateless, information collecting entities. Unfortunately, the reality of networking technologies brings a hierarchy of control loops into the system setup. At the top level, the command and status collection data loop that users manipulate the system with is a feedback loop. The commands themselves are transmitted across the network through competing streams of data, which are guided and controlled by Transmission Control Protocol (TCP) mechanisms. TCP mechanisms themselves have control loops in order to avoid congestion, provide reliability, and generally optimize flow. These TCP streams flowing across a network fabric compete at choke points, such as network switches, routers, and wireless telemetry links - all of which are also guided by control loops. This paper discusses the hierarchy of control loops present in a TmNS, provides an analysis of how these loops interact, and describes key points to be considered for telemetry systems.


Files in this item

Thumbnail
Name:
ITC_2011_11-02-04.pdf
Size:
202.7Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record