• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Severe Weather during the North American Monsoon and Its Response to Rapid Urbanization and a Changing Global Climate within the Context of High Resolution Regional Atmospheric Modeling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_14311_sip1_m.pdf
    Size:
    14.57Mb
    Format:
    PDF
    Download
    Author
    Luong, Thang Manh
    Issue Date
    2015
    Keywords
    extreme value statistic
    mesoscale convective system
    North American monsoon
    severe weather
    urbanization
    Atmospheric Sciences
    cumulus parameterization
    Advisor
    Castro, Christopher L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. With sufficient atmospheric instability and moisture, monsoon convection initiates during daytime in the mountains and later may organize, principally into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. The overarching theme of this dissertation research is to investigate simulation of monsoon severe weather due to organized convection within the use of regional atmospheric modeling. A commonly used cumulus parameterization scheme has been modified to better account for dynamic pressure effects, resulting in an improved representation of a simulated MCS during the North American monsoon experiment and the climatology of warm season precipitation in a long-term regional climate model simulation. The effect of urbanization on organized convection occurring in Phoenix is evaluated in model sensitivity experiments using an urban canopy model (UCM) and urban land cover compared to pre-settlement natural desert land cover. The presence of vegetation and irrigation makes Phoenix a "heat sink" in comparison to its surrounding desert, and as a result the modeled precipitation in response to urbanization decreases within the Phoenix urban area and increase on its periphery. Finally, analysis of how monsoon severe weather is changing in association with observed global climate change is considered within the context of a series of retrospectively simulated severe weather events during the period 1948-2010 in a numerical weather prediction paradigm. The individual severe weather events are identified by favorable thermodynamic conditions of instability and atmospheric moisture (precipitable water). Changes in precipitation extremes are evaluated with extreme value statistics. During the last several decades, there has been intensification of organized convective precipitation, but these events occur with less frequency. A more favorable thermodynamic environment for monsoon thunderstorms is the driver of these changes, which is consistent with the broader notion that anthropogenic climate change is presently intensifying weather extremes worldwide.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Atmospheric Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.