Show simple item record

dc.contributor.authorLosik, Len
dc.date.accessioned2016-02-05T18:24:11Zen
dc.date.available2016-02-05T18:24:11Zen
dc.date.issued2011-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/595787en
dc.descriptionITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevadaen_US
dc.description.abstractSpacecraft and launch vehicle reliability is dominated by premature equipment failures and surprise equipment failures that increase risk and decrease safety, mission assurance and effectiveness. Large, complex aerospace systems such as aircraft, launch vehicle and satellites are first subjected to most exhaustive and comprehensive acceptance testing program used in any industry and yet suffer from the highest premature failure rates. Desired/required spacecraft equipment performance is confirmed during factory testing using telemetry, however equipment mission life requirement is not measured but calculated manually and so the equipment that will fail prematurely are not identified and replaced before use. Spacecraft equipment mission-life is not measured and confirmed before launch as performance is but calculated using stochastic equations from probability reliability analysis engineering standards such as MIL STD 217. The change in the engineering practices used to manufacture and test spacecraft necessary to identify the equipment that will fail prematurely include using a prognostic and health management (PHM) program. A PHM includes using predictive algorithms to convert equipment telemetry into a measurement of equipment remaining usable life. A PHM makes the generation, collection, storage and engineering and scientific analysis of equipment performance data "mission critical" rather than just nice-to-have engineering information.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.subjectTelemetryen
dc.subjectPrognosticen
dc.subjectFailure Predictionen
dc.subjectFailure Analysisen
dc.subjectDiagnosticen
dc.subjectSatellite Failureen
dc.subjectLaunch Vehicle Failureen
dc.subjectFailure Analysisen
dc.subjectPrognostic Analysisen
dc.titleA Case for Waste Fraud and Abuse: Stopping the Air Force from Purchasing Spacecraft That Fail Prematurelyen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentFailure Analysisen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-07-15T22:27:29Z
html.description.abstractSpacecraft and launch vehicle reliability is dominated by premature equipment failures and surprise equipment failures that increase risk and decrease safety, mission assurance and effectiveness. Large, complex aerospace systems such as aircraft, launch vehicle and satellites are first subjected to most exhaustive and comprehensive acceptance testing program used in any industry and yet suffer from the highest premature failure rates. Desired/required spacecraft equipment performance is confirmed during factory testing using telemetry, however equipment mission life requirement is not measured but calculated manually and so the equipment that will fail prematurely are not identified and replaced before use. Spacecraft equipment mission-life is not measured and confirmed before launch as performance is but calculated using stochastic equations from probability reliability analysis engineering standards such as MIL STD 217. The change in the engineering practices used to manufacture and test spacecraft necessary to identify the equipment that will fail prematurely include using a prognostic and health management (PHM) program. A PHM includes using predictive algorithms to convert equipment telemetry into a measurement of equipment remaining usable life. A PHM makes the generation, collection, storage and engineering and scientific analysis of equipment performance data "mission critical" rather than just nice-to-have engineering information.


Files in this item

Thumbnail
Name:
ITC_2011_11-21-01.pdf
Size:
439.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record