• Astrochemistry With the Orbiting Astronomical Satellite for Investigating Stellar Systems

      Bergner, J.B.; Shirley, Y.L.; Jørgensen, J.K.; McGuire, B.; Aalto, S.; Anderson, C.M.; Chin, G.; Gerin, M.; Hartogh, P.; Kim, D.; et al. (Frontiers Media S.A., 2022)
      Chemistry along the star- and planet-formation sequence regulates how prebiotic building blocks—carriers of the elements CHNOPS—are incorporated into nascent planetesimals and planets. Spectral line observations across the electromagnetic spectrum are needed to fully characterize interstellar CHNOPS chemistry, yet to date there are only limited astrochemical constraints at THz frequencies. Here, we highlight advances to the study of CHNOPS astrochemistry that will be possible with the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS). OASIS is a NASA mission concept for a space-based observatory that will utilize an inflatable 14-m reflector along with a heterodyne receiver system to observe at THz frequencies with unprecedented sensitivity and angular resolution. As part of a survey of H2O and HD toward ∼100 protostellar and protoplanetary disk systems, OASIS will also obtain statistical constraints on the emission of complex organics from protostellar hot corinos and envelopes as well as light hydrides including NH3 and H2S toward protoplanetary disks. Line surveys of high-mass hot cores, protostellar outflow shocks, and prestellar cores will also leverage the unique capabilities of OASIS to probe high-excitation organics and small hydrides, as is needed to fully understand the chemistry of these objects. Copyright © 2022 Bergner, Shirley, Jørgensen, McGuire, Aalto, Anderson, Chin, Gerin, Hartogh, Kim, Leisawitz, Najita, Schwarz, Tielens, Walker, Wilner and Wollack.
    • LeMMINGs - II. The e-MERLIN legacy survey of nearby galaxies. The deepest radio view of the Palomar sample on parsec scale

      Baldi, R.D.; Williams, D.R.A.; McHardy, I.M.; Beswick, R.J.; Brinks, E.; Dullo, B.T.; Knapen, J.H.; Argo, M.K.; Aalto, S.; Alberdi, A.; et al. (Oxford University Press, 2021)
      We present the second data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 177 nearby galaxies from the Palomar sample, observed with the e-MERLIN array, as part of the Legacy e-MERLIN Multi-band Imaging of Nearby Galaxies Sample (LeMMINGs) survey. Together with the 103 targets of the first LeMMINGs data release, this represents a complete sample of 280 local active (LINER and Seyfert) and inactive galaxies (H ii galaxies and absorption line galaxies, ALG). This large program is the deepest radio survey of the local Universe, ≳1017.6 W Hz-1, regardless of the host and nuclear type: we detect radio emission ≳0.25 mJy beam-1 for 125/280 galaxies (44.6 per cent) with sizes of typically ≲100 pc. Of those 125, 106 targets show a core which coincides within 1.2 arcsec with the optical nucleus. Although we observed mostly cores, around one third of the detected galaxies features jetted morphologies. The detected radio core luminosities of the sample range between ∼1034 and 1040 erg s-1. LINERs and Seyferts are the most luminous sources, whereas H ii galaxies are the least. LINERs show FR I-like core-brightened radio structures while Seyferts reveal the highest fraction of symmetric morphologies. The majority of H ii galaxies have single radio core or complex extended structures, which probably conceal a nuclear starburst and/or a weak active nucleus (seven of them show clear jets). ALGs, which are typically found in evolved ellipticals, although the least numerous, exhibit on average the most luminous radio structures, similar to LINERs. © 2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
    • Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): “Following water from galaxies, through protostellar systems, to oceans”

      Walker, C.K.; Chin, G.; Aalto, S.; Anderson, C.M.; Arenberg, J.W.; Battersby, C.; Bergin, E.; Bergner, J.; Biver, N.; Bjoraker, G.L.; et al. (SPIE, 2021)
      Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) is a space-based, MIDEX-class mission concept that employs a 17-meter diameter inflatable aperture with cryogenic heterodyne receivers, enabling high sensitivity and high spectral resolution (resolving power >106) observations at terahertz frequencies. OASIS science is targeting submillimeter and far-infrared transitions of H2O and its isotopologues, as well as deuterated molecular hydrogen (HD) and other molecular species from 660 to 80 µm, which are inaccessible to ground-based telescopes due to the opacity of Earth’s atmosphere. OASIS will have >20x the collecting area and ~5x the angular resolution of Herschel, and it complements the shorter wavelength capabilities of the James Webb Space Telescope. With its large collecting area and suite of terahertz heterodyne receivers, OASIS will have the sensitivity to follow the water trail from galaxies to oceans, as well as directly measure gas mass in a wide variety of astrophysical objects from observations of the ground-state HD line. OASIS will operate in a Sun-Earth L1 halo orbit that enables observations of large numbers of galaxies, protoplanetary systems, and solar system objects during the course of its 1-year baseline mission. OASIS embraces an overarching science theme of “following water from galaxies, through protostellar systems, to oceans.” This theme resonates with the NASA Astrophysics Roadmap and the 2010 Astrophysics Decadal Survey, and it is also highly complementary to the proposed Origins Space Telescope’s objectives. © 2021 SPIE.