• Crystal alignment of a LiNi0.5Mn0.3Co0.2O2 electrode material for lithium ion batteries using its magnetic properties

      Kim, Cham; Yang, Yeokyung; Lopez, David Humberto; Ha, Dongwoo; Univ Arizona, Dept Chem & Environm Engn (AMER INST PHYSICS, 2020-09-22)
      We studied technology that enables the crystal alignment of LiNi0.5Mn0.3Co0.2O2 using its magnetic properties. LiNi0.5Mn0.3Co0.2O2 exhibited either antiferromagnetic or paramagnetic behavior depending on temperature as well as magnetic anisotropy originated from its crystallographic anisotropy. Based on these magnetic characteristics, we adjusted the vector quantity of an external magnetic field and applied it to LiNi0.5Mn0.3Co0.2O2 crystals, thus producing crystal-aligned LiNi0.5Mn0.3Co0.2O2 electrodes. In these electrodes, the (001) plane was oriented comparatively perpendicular to the surface of a current collector. Due to the intrinsic lithium ion transport kinetics in LiNi0.5Mn0.3Co0.2O2 along the (001) plane, aligned LiNi0.5Mn0.3Co0.2O2 may contribute to enhancing lithium ion conduction during the charge/discharge process in a lithium ion battery, resulting in improved electrochemical performance. Published under license by AIP Publishing.