• Bees learn preferences for plant species that offer only pollen as a reward

      Russell, Avery L.; Golden, Rebekah E.; Leonard, Anne S.; Papaj, Daniel R.; Graduate Interdisciplinary Program in Entomology and Insect Science, Entomology and Insect Science Graduate Interdisciplinary Program, University of Arizona; Department of Ecology and Evolutionary Biology, University of Arizona (Oxford University Press, 2016)
      The astonishing diversity of floral form in angiosperm plants is driven in large part by preferences of pollinators for various floral traits, including learned preferences. Remarkably, almost all of a vast literature on learning and memory in pollinators relates to nectar as a reward, even though bees and many flies, beetles, and butterflies must collect pollen. In this study, we asked if bees formed preferences for plant species from which pollen had been collected successfully. Using absolute conditioning, we gave pollen foraging bees experience with plant species that offered only pollen rewards. Naive bees generally showed modest preferences, whereas experienced bees adopted strong preferences for those species over alternative species not previously experienced. Learned preferences were retained for at least 24 h, consistent with preferences learned with nectar rewards. These experience-mediated changes in preference raised the possibility that bees formed associations between particular floral features and pollen rewards. We therefore asked if learned preferences required that bees successfully collect pollen. Using differential conditioning, we determined that learned preferences were strongly influenced by receipt of a pollen reward. In a final experiment, we characterized the importance of 2 floral features, the corolla and the anther, in the expression of learned preferences. Although experience altered responses to both floral parts, responses to anthers were influenced more strongly. We discuss recent evidence in the literature for associative learning with pollen rewards and propose that learned preferences in the context of pollen collection have played an important role in floral display evolution.