• Chickspress: a resource for chicken gene expression

      McCarthy, Fiona M; Pendarvis, Ken; Cooksey, Amanda M; Gresham, Cathy R; Bomhoff, Matt; Davey, Sean; Lyons, Eric; Sonstegard, Tad S; Bridges, Susan M; Burgess, Shane C; et al. (OXFORD UNIV PRESS, 2019-06-10)
      High-throughput sequencing and proteomics technologies are markedly increasing the amount of RNA and peptide data that are available to researchers, which are typically made publicly available via data repositories such as the NCBI Sequence Read Archive and proteome archives, respectively. These data sets contain valuable information about when and where gene products are expressed, but this information is not readily obtainable from archived data sets. Here we report Chickspress (http://geneatlas.arl.arizona.edu), the first publicly available gene expression resource for chicken tissues. Since there is no single source of chicken gene models, Chickspress incorporates both NCBI and Ensembl gene models and links these gene sets with experimental gene expression data and QTL information. By linking gene models from both NCBI and Ensembl gene prediction pipelines, researchers can, for the first time, easily compare gene models from each of these prediction workflows to available experimental data for these products. We use Chickspress data to show the differences between these gene annotation pipelines. Chickspress also provides rapid search, visualization and download capacity for chicken gene sets based upon tissue type, developmental stage and experiment type. This first Chickspress release contains 161 gene expression data sets, including expression of mRNAs, miRNAs, proteins and peptides. We provide several examples demonstrating how researchers may use this resource.
    • Large expert-curated database for benchmarking document similarity detection in biomedical literature search

      Brown, Peter; Zhou, Yaoqi; Univ Arizona, Epidemiol & Biostat (OXFORD UNIV PRESS, 2019-10-29)
      Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.
    • Large-scale automated machine reading discovers new cancer-driving mechanisms

      Valenzuela-Escárcega, Marco A; Babur, Özgün; Hahn-Powell, Gus; Bell, Dane; Hicks, Thomas; Noriega-Atala, Enrique; Wang, Xia; Surdeanu, Mihai; Demir, Emek; Morrison, Clayton T; et al. (OXFORD UNIV PRESS, 2018-09-26)
      PubMed, a repository and search engine for biomedical literature, now indexes >1 million articles each year. This exceeds the processing capacity of human domain experts, limiting our ability to truly understand many diseases. We present Reach, a system for automated, large-scale machine reading of biomedical papers that can extract mechanistic descriptions of biological processes with relatively high precision at high throughput. We demonstrate that combining the extracted pathway fragments with existing biological data analysis algorithms that rely on curated models helps identify and explain a large number of previously unidentified mutually exclusive altered signaling pathways in seven different cancer types. This work shows that combining human-curated 'big mechanisms' with extracted 'big data' can lead to a causal, predictive understanding of cellular processes and unlock important downstream applications.