• Performance, morphology and control of power-amplified mandibles in the trap-jaw ant Myrmoteras (Hymenoptera: Formicidae)

      Larabee, Fredrick J.; Gronenberg, Wulfila; Suarez, Andrew V.; Univ Arizona, Dept Neurosci (COMPANY OF BIOLOGISTS LTD, 2017-08-30)
      Trap-jaw ants are characterized by high-speed mandibles used for prey capture and defense. Power-amplified mandibles have independently evolved at least four times among ants, with each lineage using different structures as a latch, spring and trigger. We examined two species from the genus Myrmoteras (subfamily Formicinae), whose morphology is unique among trap-jaw ant lineages, and describe the performance characteristics, spring-loading mechanism and neuronal control of Myrmoteras strikes. Like other trap-jaw ants, Myrmoteras latch their jaws open while the large closer muscle loads potential energy in a spring. The latch differs from other lineages and is likely formed by the co-contraction of the mandible opener and closer muscles. The cuticle of the posterior margin of the head serves as a spring, and is deformed by approximately 6% prior to a strike. The mandibles are likely unlatched by a subgroup of closer muscle fibers with particularly short sarcomeres. These fast fibers are controlled by two large motor neurons whose dendrites overlap with terminals of large sensory neurons originating from labral trigger hairs. Upon stimulation of the trigger hairs, the mandibles shut in as little as 0.5 ms and at peak velocities that are comparable with other trap-jaw ants, but with much slower acceleration. The estimated power output of the mandible strike (21 kW kg(-1)) confirms that Myrmoteras jaws are indeed power amplified. However, the power output of Myrmoteras mandibles is significantly lower than distantly related trap-jaw ants using different spring-loading mechanisms, indicating a relationship between power-amplification mechanism and performance.
    • The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot

      Webber, James T.; Raichlen, David A.; Univ Arizona, Sch Anthropol (COMPANY OF BIOLOGISTS LTD, 2016-11-30)
      Human bipedal locomotion is characterized by a habitual heel-strike (HS) plantigrade gait, yet the significance of walking foot-posture is not well understood. To date, researchers have not fully investigated the costs of non-heel-strike (NHS) walking. Therefore, we examined walking speed, walk-to-run transition speed, estimated locomotor costs (lower limb muscle volume activated during walking), impact transient (rapid increase in ground force at touchdown) and effective limb length (ELL) in subjects (n=14) who walked at self-selected speeds using HS and NHS gaits. HS walking increases ELL compared with NHS walking since the center of pressure translates anteriorly from heel touchdown to toe-off. NHS gaits led to decreased absolutewalking speeds (P=0.012) and walk-to-run transition speeds (P=0.0025), and increased estimated locomotor energy costs (P<0.0001) compared with HS gaits. These differences lost significance after using the dynamic similarity hypothesis to account for the effects of foot landing posture on ELL. Thus, reduced locomotor costs and increased maximum walking speeds in HS gaits are linked to the increased ELL compared with NHS gaits. However, HS walking significantly increases impact transient values at all speeds (P<0.0001). These trade-offs may be key to understanding the functional benefits of HS walking. Given the current debate over the locomotor mechanics of early hominins and the range of foot landing postures used by nonhuman apes, we suggest the consistent use of HS gaits provides key locomotor advantages to striding bipeds and may have appeared early in hominin evolution.
    • Sex differences in the utilization of essential and non-essential amino acids in Lepidoptera

      Levin, Eran; McCue, Marshall D.; Davidowitz, Goggy; Univ Arizona, Dept Entomol (COMPANY OF BIOLOGISTS LTD, 2017-08-01)
      The different reproductive strategies of males and females underlie differences in behavior that may also lead to differences in nutrient use between the two sexes. We studied sex differences in the utilization of two essential amino acids (EAAs) and one non-essential amino acid (NEAA) by the Carolina sphinx moth (Manduca sexta). On day one post-eclosion from the pupae, adult male moths oxidized greater amounts of larva-derived AAs than females, and more nectar-derived AAs after feeding. After 4 days of starvation, the opposite pattern was observed: adult females oxidized more larva- derived AAs than males. Adult males allocated comparatively small amounts of nectar-derived AAs to their first spermatophore, but this allocation increased substantially in the second and third spermatophores. Males allocated significantly more adult-derived AAs to their flight muscle than females. These outcomes indicate that adult male and female moths employ different strategies for allocation and oxidation of dietary AAs.