• Bacterial Rhizoplane Colonization Patterns of Buchloe dactyloides Growing in Metalliferous Mine Tailings Reflect Plant Status and Biogeochemical Conditions

      Honeker, Linnea K; Neilson, Julia W; Root, Robert A; Gil-Loaiza, Juliana; Chorover, Jon; Maier, Raina M; Univ Arizona, Dept Soil Water & Environm Sci (SPRINGER, 2017-11)
      Plant establishment during phytostabilization of legacy mine tailings in semiarid regions is challenging due to low pH, low organic carbon, low nutrients, and high toxic metal(loid) concentrations. Plant-associated bacterial communities are particularly important under these harsh conditions because of their beneficial services to plants. We hypothesize that bacterial colonization profiles on rhizoplane surfaces reflect deterministic processes that are governed by plant health and the root environment. The aim of this study was to identify associations between bacterial colonization patterns on buffalo grass (Buchloe dactyloides) rhizoplanes and both plant status (leaf chlorophyll and plant cover) and substrate biogeochemistry (pH, electrical conductivity, total organic carbon, total nitrogen, and rhizosphere microbial community). Buffalo grass plants from mesocosm- and field-scale phytostabilization trials conducted with tailings from the Iron King Mine and Humboldt Smelter Superfund Site in Dewey-Humboldt, Arizona, were analyzed. These tailings are extremely acidic and have arsenic and lead concentrations of 2-4 g kg-1 substrate. Bacterial communities on rhizoplanes and in rhizosphere-associated substrate were characterized using fluorescence in situ hybridization and 16S rRNA gene amplicon sequencing, respectively. The results indicated that the metabolic status of rhizoplane bacterial colonizers is significantly related to plant health. Principal component analysis revealed that root-surface Alphaproteobacteria relative abundance was associated most strongly with substrate pH and Gammaproteobacteria relative abundance associated strongly with substrate pH and plant cover. These factors also affected the phylogenetic profiles of the associated rhizosphere communities. In summary, rhizoplane bacterial colonization patterns are plant specific and influenced by plant status and rhizosphere biogeochemical conditions.